Parity test (#1284)

* adding test

* adding test

* added base parity model

* added base parity model

* added parity test

* added parity test

* added parity test

* added parity test

* added parity test

* added parity test

* added parity test

* added parity test

* added parity test

* added parity test

* added parity test

* added parity test

* added parity test

* added parity test

* added parity test

* move parity to benchmark

* formatting

* fixed gradient acc sched

* move parity to benchmark

* formatting

* fixed gradient acc sched

* skip for CPU

* call last

Co-authored-by: J. Borovec <jirka.borovec@seznam.cz>
This commit is contained in:
William Falcon 2020-03-30 18:16:32 -04:00 committed by GitHub
parent c869dd8b8f
commit 18d055a390
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 153 additions and 1 deletions

View File

@ -22,7 +22,7 @@ steps:
- pip install -r ./tests/requirements.txt --user
- pip list
- python -c "import torch ; print(' & '.join([torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())]) if torch.cuda.is_available() else 'only CPU')"
- coverage run --source pytorch_lightning -m py.test pytorch_lightning tests -v --doctest-modules # --flake8
- coverage run --source pytorch_lightning -m py.test pytorch_lightning tests benchmarks -v --doctest-modules # --flake8
- coverage report
- codecov --token $CODECOV_TOKEN # --pr $DRONE_PULL_REQUEST --build $DRONE_BUILD_NUMBER --branch $DRONE_BRANCH --commit $DRONE_COMMIT --tag $DRONE_TAG
- python tests/collect_env_details.py

View File

@ -8,6 +8,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
### Added
- Added parity test between a vanilla MNIST model and lightning model ([#1284](https://github.com/PyTorchLightning/pytorch-lightning/pull/1284))
- Added Reinforcement Learning - Deep Q-network (DQN) lightning example ([#1232](https://github.com/PyTorchLightning/pytorch-lightning/pull/1232))
- Added support for hierarchical `dict` ([#1152](https://github.com/PyTorchLightning/pytorch-lightning/pull/1152))
- Added `TrainsLogger` class ([#1122](https://github.com/PyTorchLightning/pytorch-lightning/pull/1122))

0
benchmarks/__init__.py Normal file
View File

View File

@ -0,0 +1,151 @@
import os
import time
import numpy as np
import pytest
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
from pytorch_lightning import Trainer, LightningModule
class ParityMNIST(LightningModule):
def __init__(self):
super(ParityMNIST, self).__init__()
self.c_d1 = nn.Linear(in_features=28 * 28, out_features=128)
self.c_d1_bn = nn.BatchNorm1d(128)
self.c_d1_drop = nn.Dropout(0.3)
self.c_d2 = nn.Linear(in_features=128, out_features=10)
def forward(self, x):
x = x.view(x.size(0), -1)
x = self.c_d1(x)
x = torch.tanh(x)
x = self.c_d1_bn(x)
x = self.c_d1_drop(x)
x = self.c_d2(x)
return x
def training_step(self, batch, batch_nb):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
return {'loss': loss}
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.02)
def train_dataloader(self):
return DataLoader(MNIST(os.getcwd(), train=True, download=True,
transform=transforms.ToTensor()), batch_size=32)
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
def test_pytorch_parity(tmpdir):
"""
Verify that the same pytorch and lightning models achieve the same results
:param tmpdir:
:return:
"""
num_epochs = 2
num_rums = 3
lightning_outs, pl_times = lightning_loop(ParityMNIST, num_rums, num_epochs)
manual_outs, pt_times = vanilla_loop(ParityMNIST, num_rums, num_epochs)
# make sure the losses match exactly to 5 decimal places
for pl_out, pt_out in zip(lightning_outs, manual_outs):
np.testing.assert_almost_equal(pl_out, pt_out, 5)
def set_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
def vanilla_loop(MODEL, num_runs=10, num_epochs=10):
"""
Returns an array with the last loss from each epoch for each run
"""
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
errors = []
times = []
for i in range(num_runs):
time_start = time.perf_counter()
# set seed
seed = i
set_seed(seed)
# init model parts
model = MODEL()
dl = model.train_dataloader()
optimizer = model.configure_optimizers()
# model to GPU
model = model.to(device)
epoch_losses = []
for epoch in range(num_epochs):
# run through full training set
for j, batch in enumerate(dl):
x, y = batch
x = x.cuda(0)
y = y.cuda(0)
batch = (x, y)
loss_dict = model.training_step(batch, j)
loss = loss_dict['loss']
loss.backward()
optimizer.step()
optimizer.zero_grad()
# track last epoch loss
epoch_losses.append(loss.item())
time_end = time.perf_counter()
times.append(time_end - time_start)
errors.append(epoch_losses[-1])
return errors, times
def lightning_loop(MODEL, num_runs=10, num_epochs=10):
errors = []
times = []
for i in range(num_runs):
time_start = time.perf_counter()
# set seed
seed = i
set_seed(seed)
# init model parts
model = MODEL()
trainer = Trainer(
max_epochs=num_epochs,
show_progress_bar=False,
weights_summary=None,
gpus=1,
early_stop_callback=False,
checkpoint_callback=False
)
trainer.fit(model)
final_loss = trainer.running_loss.last().item()
errors.append(final_loss)
time_end = time.perf_counter()
times.append(time_end - time_start)
return errors, times