diff --git a/LICENSE b/COPYING similarity index 100% rename from LICENSE rename to COPYING diff --git a/README.md b/README.md index a9ae3aa0f9..3a57ad6be1 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@

- +

@@ -12,7 +12,7 @@

PyPI version - +

```bash @@ -22,7 +22,7 @@ pip install pytorch-lightning ## Docs In progress. Documenting now! -## Disclaimer +## Disclaimer This is a research tool I built for myself internally while doing my PhD. The API is not 100% production quality, but my hope is that by open-sourcing, we can all get it there (I don't have too much time nowadays to write production-level code). ## What is it? @@ -38,7 +38,7 @@ Your model. 2. Run the validation loop. 3. Run the testing loop. 4. Early stopping. -5. Learning rate annealing. +5. Learning rate annealing. 6. Can train complex models like GANs or anything with multiple optimizers. 7. Weight checkpointing. 8. Model saving. @@ -49,7 +49,7 @@ Your model. 13. Distribute memory-bound models on multiple GPUs. 14. Give your model hyperparameters parsed from the command line OR a JSON file. 15. Run your model in a dev environment where nothing logs. - + ## Usage To use lightning do 2 things: 1. [Define a trainer](https://github.com/williamFalcon/pytorch-lightning/blob/master/pytorch_lightning/trainer_main.py) (which will run ALL your models). @@ -130,32 +130,32 @@ class My_Model(RootModule): def __init__(self): # define model self.l1 = nn.Linear(200, 10) - + # --------------- # TRAINING def training_step(self, data_batch): x, y = data_batch y_hat = self.l1(x) loss = some_loss(y_hat) - + return loss_val, {'train_loss': loss} - + def validation_step(self, data_batch): x, y = data_batch y_hat = self.l1(x) loss = some_loss(y_hat) - + return loss_val, {'val_loss': loss} - + def validation_end(self, outputs): total_accs = [] - + for output in outputs: total_accs.append(output['val_acc'].item()) - + # return a dict return {'total_acc': np.mean(total_accs)} - + # --------------- # SAVING def get_save_dict(self): @@ -167,7 +167,7 @@ class My_Model(RootModule): def load_model_specific(self, checkpoint): # lightning loads for you. Here's your chance to say what you want to load self.load_state_dict(checkpoint['state_dict']) - + # --------------- # TRAINING CONFIG def configure_optimizers(self): @@ -175,7 +175,7 @@ class My_Model(RootModule): # lightning will call automatically optimizer = self.choose_optimizer('adam', self.parameters(), {'lr': self.hparams.learning_rate}, 'optimizer') return [optimizer] - + @property def tng_dataloader(self): return pytorch_dataloader('train') @@ -187,7 +187,7 @@ class My_Model(RootModule): @property def test_dataloader(self): return pytorch_dataloader('test') - + # --------------- # MODIFY YOUR COMMAND LINE ARGS @staticmethod @@ -206,7 +206,7 @@ class My_Model(RootModule): | training_step | Called with a batch of data during training | data from your dataloaders | tuple: scalar, dict | | validation_step | Called with a batch of data during validation | data from your dataloaders | tuple: scalar, dict | | validation_end | Collate metrics from all validation steps | outputs: array where each item is the output of a validation step | dict: for logging | -| get_save_dict | called when your model needs to be saved (checkpoints, hpc save, etc...) | None | dict to be saved | +| get_save_dict | called when your model needs to be saved (checkpoints, hpc save, etc...) | None | dict to be saved | #### Model training | Name | Description | Input | Return | @@ -222,7 +222,7 @@ class My_Model(RootModule): |---|---|---|---| | get_save_dict | called when your model needs to be saved (checkpoints, hpc save, etc...) | None | dict to be saved | | load_model_specific | called when loading a model | checkpoint: dict you created in get_save_dict | dict: modified in whatever way you want | - + ## Optional model hooks. Add these to the model whenever you want to configure training behavior. diff --git a/imgs/lightning_logo.png b/docs/source/_static/lightning_logo.png similarity index 100% rename from imgs/lightning_logo.png rename to docs/source/_static/lightning_logo.png diff --git a/demo/basic_trainer.py b/docs/source/examples/basic_trainer.py similarity index 100% rename from demo/basic_trainer.py rename to docs/source/examples/basic_trainer.py diff --git a/demo/example_model.py b/docs/source/examples/example_model.py similarity index 100% rename from demo/example_model.py rename to docs/source/examples/example_model.py diff --git a/demo/fully_featured_trainer.py b/docs/source/examples/fully_featured_trainer.py similarity index 100% rename from demo/fully_featured_trainer.py rename to docs/source/examples/fully_featured_trainer.py diff --git a/imgs/.DS_Store b/imgs/.DS_Store deleted file mode 100644 index 1d3f4c0ab6..0000000000 Binary files a/imgs/.DS_Store and /dev/null differ diff --git a/pytorch_lightning/root_module/__init__.py b/pytorch_lightning/root_module/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/pytorch_lightning/utils/__init__.py b/pytorch_lightning/utils/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/setup.py b/setup.py index 80bb2b1502..334369148d 100755 --- a/setup.py +++ b/setup.py @@ -2,12 +2,58 @@ from setuptools import setup, find_packages -setup(name='pytorch-lightning', - version='0.0.2', - description='Rapid research framework', - author='', - author_email='', - url='https://github.com/williamFalcon/pytorch-lightning', - install_requires=['test-tube', 'torch', 'tqdm'], - packages=find_packages() - ) +# https://packaging.python.org/guides/single-sourcing-package-version/ +version = {} +with open(os.path.join("src", "pytorch-lightning", "__init__.py")) as fp: + exec(fp.read(), version) + +# http://blog.ionelmc.ro/2014/05/25/python-packaging/ +setup( + name="pytorch-lightning", + version=version["__version__"], + description="The Keras for ML researchers using PyTorch", + author="William Falcon", + author_email="waf2107@columbia.edu", + url="https://github.com/williamFalcon/pytorch-lightning", + download_url="https://github.com/williamFalcon/pytorch-lightning", + license="MIT", + keywords=["deep learning", "pytorch", "AI"], + python_requires=">=3.5", + install_requires=[ + "torch", + "tqdm", + "test-tube", + ], + extras_require={ + "dev": [ + "black ; python_version>='3.6'", + "coverage", + "isort", + "pytest", + "pytest-cov<2.6.0", + "pycodestyle", + "sphinx", + "nbsphinx", + "ipython>=5.0", + "jupyter-client", + ] + }, + packages=find_packages("src"), + package_dir={"": "src"}, + entry_points={"console_scripts": ["pytorch-lightning = pytorch-lightning.cli:main"]}, + classifiers=[ + "Development Status :: 4 - Beta", + "Intended Audience :: Education", + "Intended Audience :: Science/Research", + "License :: OSI Approved :: MIT License", + "Operating System :: OS Independent", + "Programming Language :: Python", + "Programming Language :: Python :: 3", + "Programming Language :: Python :: 3.5", + "Programming Language :: Python :: 3.6", + "Programming Language :: Python :: 3.7", + ], + long_description=open("README.md", encoding="utf-8").read(), + include_package_data=True, + zip_safe=False, +) diff --git a/src/pytorch-lightning/__init__.py b/src/pytorch-lightning/__init__.py new file mode 100644 index 0000000000..7ce8e11283 --- /dev/null +++ b/src/pytorch-lightning/__init__.py @@ -0,0 +1,10 @@ +""" +================= +pytorch-lightning +================= + +The Keras for ML researchers using PyTorch. More control. Less boilerplate. + +""" + +__version__ = "0.1.dev0" diff --git a/__init__.py b/src/pytorch-lightning/models/__init__.py similarity index 100% rename from __init__.py rename to src/pytorch-lightning/models/__init__.py diff --git a/notebooks/__init__.py b/src/pytorch-lightning/models/model_examples/__init__.py similarity index 100% rename from notebooks/__init__.py rename to src/pytorch-lightning/models/model_examples/__init__.py diff --git a/src/pytorch-lightning/models/model_examples/bilstm.py b/src/pytorch-lightning/models/model_examples/bilstm.py new file mode 100644 index 0000000000..f221a9d778 --- /dev/null +++ b/src/pytorch-lightning/models/model_examples/bilstm.py @@ -0,0 +1,167 @@ +import torch.nn as nn +import numpy as np + +from test_tube import HyperOptArgumentParser +import torch +from torch.autograd import Variable +from sklearn.metrics import confusion_matrix, f1_score +from torch.nn import functional as F + + +class BiLSTMPack(nn.Module): + """ + Sample model to show how to define a template + """ + def __init__(self, hparams): + # init superclass + super(BiLSTMPack, self).__init__(hparams) + + self.hidden = None + + # trigger tag building + self.ner_tagset = {'O': 0, 'I-Bio': 1} + self.nb_tags = len(self.ner_tagset) + + # build model + print('building model...') + if hparams.model_load_weights_path is None: + self.__build_model() + print('model built') + else: + self = BiLSTMPack.load(hparams.model_load_weights_path, hparams.on_gpu, hparams) + print('model loaded from: {}'.format(hparams.model_load_weights_path)) + + def __build_model(self): + """ + Layout model + :return: + """ + # design the number of final units + self.output_dim = self.hparams.nb_lstm_units + + # when it's bidirectional our weights double + if self.hparams.bidirectional: + self.output_dim *= 2 + + # total number of words + total_words = len(self.tng_dataloader.dataset.words_token_to_idx) + + # word embeddings + self.word_embedding = nn.Embedding( + num_embeddings=total_words + 1, + embedding_dim=self.hparams.embedding_dim, + padding_idx=0 + ) + + # design the LSTM + self.lstm = nn.LSTM( + self.hparams.embedding_dim, + self.hparams.nb_lstm_units, + num_layers=self.hparams.nb_lstm_layers, + bidirectional=self.hparams.bidirectional, + dropout=self.hparams.drop_prob, + batch_first=True, + ) + + # map to tag space + self.fc_out = nn.Linear(self.output_dim, self.out_dim) + self.hidden_to_tag = nn.Linear(self.output_dim, self.nb_tags) + + + def init_hidden(self, batch_size): + + # the weights are of the form (nb_layers * 2 if bidirectional, batch_size, nb_lstm_units) + mult = 2 if self.hparams.bidirectional else 1 + hidden_a = torch.randn(self.hparams.nb_layers * mult, batch_size, self.nb_rnn_units) + hidden_b = torch.randn(self.hparams.nb_layers * mult, batch_size, self.nb_rnn_units) + + if self.hparams.on_gpu: + hidden_a = hidden_a.cuda() + hidden_b = hidden_b.cuda() + + hidden_a = Variable(hidden_a) + hidden_b = Variable(hidden_b) + + return (hidden_a, hidden_b) + + def forward(self, model_in): + # layout data (expand it, etc...) + # x = sequences + x, seq_lengths = model_in + batch_size, seq_len = x.size() + + # reset RNN hidden state + self.hidden = self.init_hidden(batch_size) + + # embed + x = self.word_embedding(x) + + # run through rnn using packed sequences + x = torch.nn.utils.rnn.pack_padded_sequence(x, seq_lengths, batch_first=True) + x, self.hidden = self.lstm(x, self.hidden) + x, _ = torch.nn.utils.rnn.pad_packed_sequence(x, batch_first=True) + + # if asked for only last state, use the h_n which is the same as out(t=n) + if not self.return_sequence: + # pull out hidden states + # h_n = (nb_directions * nb_layers, batch_size, emb_size) + nb_directions = 2 if self.bidirectional else 1 + (h_n, _) = self.hidden + + # reshape to make indexing easier + # forward = 0, backward = 1 (of nb_directions) + h_n = h_n.view(self.nb_layers, nb_directions, batch_size, self.nb_rnn_units) + + # pull out last forward + forward_h_n = h_n[-1, 0, :, :] + x = forward_h_n + + # if bidirectional, also pull out the last hidden of backward network + if self.bidirectional: + backward_h_n = h_n[-1, 1, :, :] + x = torch.cat([forward_h_n, backward_h_n], dim=1) + + # project to tag space + x = x.contiguous() + x = x.view(-1, self.output_dim) + x = self.hidden_to_tag(x) + + return x + + def loss(self, model_out): + # cross entropy loss + logits, y = model_out + y, y_lens = y + + # flatten y and logits + y = y.view(-1) + logits = logits.view(-1, self.nb_tags) + + # calculate a mask to remove padding tokens + mask = (y >= 0).float() + + # count how many tokens we have + num_tokens = int(torch.sum(mask).data[0]) + + # pick the correct values and mask out + logits = logits[range(logits.shape[0]), y] * mask + + # compute the ce loss + ce_loss = -torch.sum(logits)/num_tokens + + return ce_loss + + def pull_out_last_embedding(self, x, seq_lengths, batch_size, on_gpu): + # grab only the last activations from the non-padded ouput + x_last = torch.zeros([batch_size, 1, x.size(-1)]) + for i, seq_len in enumerate(seq_lengths): + x_last[i, :, :] = x[i, seq_len-1, :] + + # put on gpu when requested + if on_gpu: + x_last = x_last.cuda() + + # turn into torch var + x_last = Variable(x_last) + + return x_last \ No newline at end of file diff --git a/pytorch_lightning/__init__.py b/src/pytorch-lightning/models/sample_model_template/__init__.py similarity index 100% rename from pytorch_lightning/__init__.py rename to src/pytorch-lightning/models/sample_model_template/__init__.py diff --git a/pytorch_lightning/models/sample_model_template/model_template.py b/src/pytorch-lightning/models/sample_model_template/model_template.py similarity index 100% rename from pytorch_lightning/models/sample_model_template/model_template.py rename to src/pytorch-lightning/models/sample_model_template/model_template.py diff --git a/pytorch_lightning/models/trainer.py b/src/pytorch-lightning/models/trainer.py similarity index 100% rename from pytorch_lightning/models/trainer.py rename to src/pytorch-lightning/models/trainer.py diff --git a/pytorch_lightning/models/__init__.py b/src/pytorch-lightning/root_module/__init__.py similarity index 100% rename from pytorch_lightning/models/__init__.py rename to src/pytorch-lightning/root_module/__init__.py diff --git a/pytorch_lightning/root_module/grads.py b/src/pytorch-lightning/root_module/grads.py similarity index 100% rename from pytorch_lightning/root_module/grads.py rename to src/pytorch-lightning/root_module/grads.py diff --git a/pytorch_lightning/root_module/hooks.py b/src/pytorch-lightning/root_module/hooks.py similarity index 100% rename from pytorch_lightning/root_module/hooks.py rename to src/pytorch-lightning/root_module/hooks.py diff --git a/pytorch_lightning/root_module/memory.py b/src/pytorch-lightning/root_module/memory.py similarity index 100% rename from pytorch_lightning/root_module/memory.py rename to src/pytorch-lightning/root_module/memory.py diff --git a/pytorch_lightning/root_module/model_saving.py b/src/pytorch-lightning/root_module/model_saving.py similarity index 100% rename from pytorch_lightning/root_module/model_saving.py rename to src/pytorch-lightning/root_module/model_saving.py diff --git a/pytorch_lightning/root_module/optimization.py b/src/pytorch-lightning/root_module/optimization.py similarity index 100% rename from pytorch_lightning/root_module/optimization.py rename to src/pytorch-lightning/root_module/optimization.py diff --git a/pytorch_lightning/root_module/root_module.py b/src/pytorch-lightning/root_module/root_module.py similarity index 100% rename from pytorch_lightning/root_module/root_module.py rename to src/pytorch-lightning/root_module/root_module.py diff --git a/pytorch_lightning/trainer_main.py b/src/pytorch-lightning/trainer_main.py similarity index 100% rename from pytorch_lightning/trainer_main.py rename to src/pytorch-lightning/trainer_main.py diff --git a/pytorch_lightning/models/sample_model_template/__init__.py b/src/pytorch-lightning/utils/__init__.py similarity index 100% rename from pytorch_lightning/models/sample_model_template/__init__.py rename to src/pytorch-lightning/utils/__init__.py diff --git a/pytorch_lightning/utils/arg_parse.py b/src/pytorch-lightning/utils/arg_parse.py similarity index 100% rename from pytorch_lightning/utils/arg_parse.py rename to src/pytorch-lightning/utils/arg_parse.py diff --git a/pytorch_lightning/utils/embeddings.py b/src/pytorch-lightning/utils/embeddings.py similarity index 100% rename from pytorch_lightning/utils/embeddings.py rename to src/pytorch-lightning/utils/embeddings.py diff --git a/pytorch_lightning/utils/plotting.py b/src/pytorch-lightning/utils/plotting.py similarity index 100% rename from pytorch_lightning/utils/plotting.py rename to src/pytorch-lightning/utils/plotting.py diff --git a/pytorch_lightning/utils/pt_callbacks.py b/src/pytorch-lightning/utils/pt_callbacks.py similarity index 100% rename from pytorch_lightning/utils/pt_callbacks.py rename to src/pytorch-lightning/utils/pt_callbacks.py diff --git a/src/pytorch_lightning/__init__.py b/src/pytorch_lightning/__init__.py new file mode 100644 index 0000000000..7ce8e11283 --- /dev/null +++ b/src/pytorch_lightning/__init__.py @@ -0,0 +1,10 @@ +""" +================= +pytorch-lightning +================= + +The Keras for ML researchers using PyTorch. More control. Less boilerplate. + +""" + +__version__ = "0.1.dev0" diff --git a/tests/README.md b/tests/README.md deleted file mode 100644 index 18c7a537c8..0000000000 --- a/tests/README.md +++ /dev/null @@ -1,65 +0,0 @@ -# Testing setup - -## A. Enable CircleCI for your project -1. Integrate CircleCI by clicking "Set up Project" at [this link](https://circleci.com/add-projects/gh/NextGenVest). - -## B. Add your own tests -1. In the /tests, emulate exactly the folder structure for your module found under /bot_seed -2. To create a test for file ```/bot_seed/folder/example.py```: - - create the file ```/tests/folder/example_test.py``` - - notice the **_test** - - notice the mirror path under **/tests** - -3. Your ```example_test.py``` file should have these main components - -```python -# example.py - -def function_i_want_to_test(x): - return x*2 - -def square(x): - return x*x - -``` - -```python -# example_test.py - -import pytest - -# do whatever imports you need -from app.bot_seed.folder.example import function_i_want_to_test, square - -def test_function_i_want_to_test(): - answer = function_i_want_to_test(4) - assert answer == 8 - -# ----------------------------------- -# Your function must start with test_ -# ----------------------------------- -def test_square(): - answer = square(3) - assert answer == 9 - -# ----------------------------------- -# boilerplate (link this file to pytest) -# ----------------------------------- -if __name__ == '__main__': - pytest.main([__file__]) -``` - -## C. Add build passing badge -1. Create a CircleCI status token: - - Go here: https://circleci.com/gh/NextGenVest/your-project-name/edit#api - - Click create token - - Select status - - Type "badge status" - -2. Get a copy of the markdown code: - - Go here: https://circleci.com/gh/NextGenVest/your-project-name/edit#badges - - Select master - - Select "badge status" token - - Select image URL - - Copy the image url link and change the html at the top of the root README.md file for your project - \ No newline at end of file diff --git a/tests/__init__.py b/tests/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/tests/research_proj/__init__.py b/tests/research_proj/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/tests/research_proj/sample_model_template/__init__.py b/tests/research_proj/sample_model_template/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/tests/research_proj/sample_model_template/model_template_test.py b/tests/research_proj/sample_model_template/model_template_test.py deleted file mode 100644 index 1ab841611b..0000000000 --- a/tests/research_proj/sample_model_template/model_template_test.py +++ /dev/null @@ -1,13 +0,0 @@ -import pytest - -""" -Example test to show how to add a test for anything in the project. -Look at the README for more instructions -""" - - -def test_cube(): - assert 27 == 27 - -if __name__ == '__main__': - pytest.main([__file__])