diff --git a/pytorch_lightning/trainer/distrib_parts.py b/pytorch_lightning/trainer/distrib_parts.py index 991b1796fc..0a629a6f21 100644 --- a/pytorch_lightning/trainer/distrib_parts.py +++ b/pytorch_lightning/trainer/distrib_parts.py @@ -512,7 +512,7 @@ class TrainerDPMixin(ABC): # check for this bug (amp + dp + !01 doesn't work) # https://github.com/NVIDIA/apex/issues/227 if self.use_dp and self.use_amp: - if self.amp_level == 'O2': + if self.amp_level == 'O2': # pragma: no cover m = f""" Amp level {self.amp_level} with DataParallel is not supported. See this note from NVIDIA for more info: https://github.com/NVIDIA/apex/issues/227. diff --git a/pytorch_lightning/trainer/trainer.py b/pytorch_lightning/trainer/trainer.py index a22c3c4c84..212edfdcd8 100644 --- a/pytorch_lightning/trainer/trainer.py +++ b/pytorch_lightning/trainer/trainer.py @@ -461,40 +461,6 @@ class Trainer(TrainerIOMixin, params = vars(args) return cls(**params) - def __parse_gpu_ids(self, gpus): - """Parse GPUs id. - - :param list|str|int gpus: input GPU ids - :return list(int): - """ - # if gpus = -1 then use all available devices - # otherwise, split the string using commas - if gpus is not None: - if isinstance(gpus, list): - gpus = gpus - elif isinstance(gpus, str): - if gpus == '-1': - gpus = list(range(0, torch.cuda.device_count())) - else: - gpus = [int(x.strip()) for x in gpus.split(',')] - elif isinstance(gpus, int): - gpus = gpus - else: - raise ValueError('`gpus` has to be a string, int or list of ints') - - return gpus - - def __set_root_gpu(self, gpus): - if gpus is None: - return None - - # set root gpu - root_gpu = 0 - if isinstance(gpus, list): - root_gpu = gpus[0] - - return root_gpu - @property def num_gpus(self) -> int: gpus = self.data_parallel_device_ids @@ -617,7 +583,7 @@ class Trainer(TrainerIOMixin, elif self.single_gpu: self.single_gpu_train(model) - elif self.use_tpu: + elif self.use_tpu: # pragma: no cover log.info(f'training on {self.num_tpu_cores} TPU cores') # COLAB_GPU is an env var available by default in Colab environments. @@ -877,7 +843,7 @@ class Trainer(TrainerIOMixin, if model is not None: self.model = model self.fit(model) - elif self.use_ddp or self.use_tpu: + elif self.use_ddp or self.use_tpu: # pragma: no cover # attempt to load weights from a spawn path = os.path.join(self.default_save_path, '__temp_weight_ddp_end.ckpt') test_model = self.model @@ -902,51 +868,3 @@ class _PatchDataLoader(object): def __call__(self) -> Union[List[DataLoader], DataLoader]: return self.dataloader - - -def _set_dataloader(model, dataloader, attribute): - r''' - Check dataloaders passed to .fit() method if they are pytorch DataLoader - objects and whether or not we should overright the corresponding dataloader - in the model - - Args: - model (LightningModule): The model to check - - dataloader: If a pytorch dataloader (or a list of pytorch dataloaders) - is passed, it will be incorporate into the model as model.attribute. - If attribute alreay exist it will warn the userpass. If not a - dataloader will throw an error - - attribute (str): The attribute to save the dataloader under - - ''' - # Check if attribute comes directly from base class or - # derived in user subclass - if LightningModule.__qualname__ in getattr(model, attribute).__qualname__: - # Val and test should be list of dataloaders - dataloader = dataloader if attribute == 'train_dataloader' or \ - (attribute != 'train_dataloader' and isinstance(dataloader, list)) else [dataloader] - - # Check we are given valid dataloaders - is_dataloader = isinstance(dataloader, torch.utils.data.DataLoader) - is_dataloader_list = isinstance(dataloader, list) - valid_loaders = None - if is_dataloader_list: - valid_loaders = all(isinstance(d, torch.utils.data.DataLoader) for d in dataloader) - if is_dataloader or is_dataloader_list and valid_loaders: - - # Overwrite abstract methods - def dl(): - return dataloader - dl.__name__ = attribute - setattr(model, attribute, dl) - - elif dataloader and dataloader != [None]: - raise ValueError(f'`{attribute}` needs to be an instance of ' - '`torch.utils.data.DataLoader` or a list of ' - 'DataLoaders, instead got %r`' % dataloader) - - elif dataloader: # if default (None) is passed, do not warn the user - warnings.warn(f'Model has predefined `{attribute}`,' - f' will skip `{attribute}={dataloader}` passed to fit method.') diff --git a/pytorch_lightning/trainer/training_io.py b/pytorch_lightning/trainer/training_io.py index c5ade16a84..25e5644aff 100644 --- a/pytorch_lightning/trainer/training_io.py +++ b/pytorch_lightning/trainer/training_io.py @@ -206,7 +206,7 @@ class TrainerIOMixin(ABC): signal.signal(signal.SIGUSR1, self.sig_handler) signal.signal(signal.SIGTERM, self.term_handler) - def sig_handler(self, signum, frame): + def sig_handler(self, signum, frame): # pragma: no cover if self.proc_rank == 0: # save weights log.info('handling SIGUSR1')