[BugFix] Resolve bugs in computer_vision_fine_tuning.py example (#5985)
* update the script to use DataModule * add message at for the frozen parameters * add message about trainable parameters * resolve flake8
This commit is contained in:
parent
6e79bef996
commit
141316fb29
|
@ -153,4 +153,5 @@ wandb
|
|||
cifar-10-batches-py
|
||||
*.pt
|
||||
# ctags
|
||||
tags
|
||||
tags
|
||||
data
|
||||
|
|
|
@ -37,12 +37,12 @@ the classifier is trained with lr = 1e-4.
|
|||
Note:
|
||||
See: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import os
|
||||
from pathlib import Path
|
||||
from tempfile import TemporaryDirectory
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn, optim
|
||||
from torch.optim.lr_scheduler import MultiStepLR
|
||||
|
@ -55,52 +55,114 @@ from torchvision.datasets.utils import download_and_extract_archive
|
|||
import pytorch_lightning as pl
|
||||
from pl_examples import cli_lightning_logo
|
||||
from pytorch_lightning import _logger as log
|
||||
from pytorch_lightning import LightningDataModule
|
||||
from pytorch_lightning.callbacks.finetuning import BaseFinetuning
|
||||
from pytorch_lightning.utilities import rank_zero_info
|
||||
|
||||
DATA_URL = "https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip"
|
||||
|
||||
# --- Finetuning Callback ---
|
||||
|
||||
|
||||
class MilestonesFinetuningCallback(BaseFinetuning):
|
||||
class MilestonesFinetuning(BaseFinetuning):
|
||||
|
||||
def __init__(self, milestones: tuple = (5, 10), train_bn: bool = True):
|
||||
def __init__(self, milestones: tuple = (5, 10), train_bn: bool = False):
|
||||
self.milestones = milestones
|
||||
self.train_bn = train_bn
|
||||
|
||||
def freeze_before_training(self, pl_module: pl.LightningModule):
|
||||
self.freeze(module=pl_module.feature_extractor, train_bn=self.train_bn)
|
||||
self.freeze(modules=pl_module.feature_extractor, train_bn=self.train_bn)
|
||||
|
||||
def finetune_function(self, pl_module: pl.LightningModule, epoch: int, optimizer: Optimizer, opt_idx: int):
|
||||
if epoch == self.milestones[0]:
|
||||
# unfreeze 5 last layers
|
||||
self.unfreeze_and_add_param_group(
|
||||
module=pl_module.feature_extractor[-5:], optimizer=optimizer, train_bn=self.train_bn
|
||||
modules=pl_module.feature_extractor[-5:], optimizer=optimizer, train_bn=self.train_bn
|
||||
)
|
||||
|
||||
elif epoch == self.milestones[1]:
|
||||
# unfreeze remaing layers
|
||||
self.unfreeze_and_add_param_group(
|
||||
module=pl_module.feature_extractor[:-5], optimizer=optimizer, train_bn=self.train_bn
|
||||
modules=pl_module.feature_extractor[:-5], optimizer=optimizer, train_bn=self.train_bn
|
||||
)
|
||||
|
||||
|
||||
class CatDogImageDataModule(LightningDataModule):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dl_path: Union[str, Path],
|
||||
num_workers: int = 0,
|
||||
batch_size: int = 8,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self._dl_path = dl_path
|
||||
self._num_workers = num_workers
|
||||
self._batch_size = batch_size
|
||||
|
||||
def prepare_data(self):
|
||||
"""Download images and prepare images datasets."""
|
||||
download_and_extract_archive(url=DATA_URL, download_root=self._dl_path, remove_finished=True)
|
||||
|
||||
@property
|
||||
def data_path(self):
|
||||
return Path(self._dl_path).joinpath("cats_and_dogs_filtered")
|
||||
|
||||
@property
|
||||
def normalize_transform(self):
|
||||
return transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
|
||||
@property
|
||||
def train_transform(self):
|
||||
return transforms.Compose([
|
||||
transforms.Resize((224, 224)),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.ToTensor(), self.normalize_transform
|
||||
])
|
||||
|
||||
@property
|
||||
def valid_transform(self):
|
||||
return transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor(), self.normalize_transform])
|
||||
|
||||
def create_dataset(self, root, transform):
|
||||
return ImageFolder(root=root, transform=transform)
|
||||
|
||||
def __dataloader(self, train: bool):
|
||||
"""Train/validation loaders."""
|
||||
if train:
|
||||
dataset = self.create_dataset(self.data_path.joinpath("train"), self.train_transform)
|
||||
else:
|
||||
dataset = self.create_dataset(self.data_path.joinpath("validation"), self.valid_transform)
|
||||
return DataLoader(dataset=dataset, batch_size=self._batch_size, num_workers=self._num_workers, shuffle=train)
|
||||
|
||||
def train_dataloader(self):
|
||||
log.info("Training data loaded.")
|
||||
return self.__dataloader(train=True)
|
||||
|
||||
def val_dataloader(self):
|
||||
log.info("Validation data loaded.")
|
||||
return self.__dataloader(train=False)
|
||||
|
||||
@staticmethod
|
||||
def add_model_specific_args(parent_parser):
|
||||
parser = argparse.ArgumentParser(parents=[parent_parser])
|
||||
parser.add_argument(
|
||||
"--num-workers", default=0, type=int, metavar="W", help="number of CPU workers", dest="num_workers"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch-size", default=8, type=int, metavar="W", help="number of sample in a batch", dest="batch_size"
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
# --- Pytorch-lightning module ---
|
||||
|
||||
|
||||
class TransferLearningModel(pl.LightningModule):
|
||||
"""Transfer Learning with pre-trained ResNet50.
|
||||
>>> with TemporaryDirectory(dir='.') as tmp_dir:
|
||||
... TransferLearningModel(tmp_dir) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
|
||||
TransferLearningModel(
|
||||
(feature_extractor): Sequential(...)
|
||||
(fc): Sequential(...)
|
||||
)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dl_path: Union[str, Path],
|
||||
backbone: str = "resnet50",
|
||||
train_bn: bool = True,
|
||||
milestones: tuple = (5, 10),
|
||||
|
@ -115,7 +177,6 @@ class TransferLearningModel(pl.LightningModule):
|
|||
dl_path: Path where the data will be downloaded
|
||||
"""
|
||||
super().__init__()
|
||||
self.dl_path = dl_path
|
||||
self.backbone = backbone
|
||||
self.train_bn = train_bn
|
||||
self.milestones = milestones
|
||||
|
@ -124,7 +185,6 @@ class TransferLearningModel(pl.LightningModule):
|
|||
self.lr_scheduler_gamma = lr_scheduler_gamma
|
||||
self.num_workers = num_workers
|
||||
|
||||
self.dl_path = dl_path
|
||||
self.__build_model()
|
||||
|
||||
self.train_acc = pl.metrics.Accuracy()
|
||||
|
@ -163,7 +223,7 @@ class TransferLearningModel(pl.LightningModule):
|
|||
# 2. Classifier (returns logits):
|
||||
x = self.fc(x)
|
||||
|
||||
return F.sigmoid(x)
|
||||
return torch.sigmoid(x)
|
||||
|
||||
def loss(self, logits, labels):
|
||||
return self.loss_func(input=logits, target=labels)
|
||||
|
@ -195,60 +255,16 @@ class TransferLearningModel(pl.LightningModule):
|
|||
self.log("val_acc", self.valid_acc(y_logits, y_true.int()), prog_bar=True)
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = optim.Adam(filter(lambda p: p.requires_grad, self.parameters()), lr=self.lr)
|
||||
|
||||
parameters = list(self.parameters())
|
||||
trainable_parameters = list(filter(lambda p: p.requires_grad, parameters))
|
||||
rank_zero_info(
|
||||
f"The model will start training with only {len(trainable_parameters)} "
|
||||
f"trainable parameters out of {len(parameters)}."
|
||||
)
|
||||
optimizer = optim.Adam(trainable_parameters, lr=self.lr)
|
||||
scheduler = MultiStepLR(optimizer, milestones=self.milestones, gamma=self.lr_scheduler_gamma)
|
||||
|
||||
return [optimizer], [scheduler]
|
||||
|
||||
def prepare_data(self):
|
||||
"""Download images and prepare images datasets."""
|
||||
download_and_extract_archive(url=DATA_URL, download_root=self.dl_path, remove_finished=True)
|
||||
|
||||
def setup(self, stage: str):
|
||||
data_path = Path(self.dl_path).joinpath("cats_and_dogs_filtered")
|
||||
|
||||
# 2. Load the data + preprocessing & data augmentation
|
||||
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
|
||||
train_dataset = ImageFolder(
|
||||
root=data_path.joinpath("train"),
|
||||
transform=transforms.Compose([
|
||||
transforms.Resize((224, 224)),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.ToTensor(),
|
||||
normalize,
|
||||
]),
|
||||
)
|
||||
|
||||
valid_dataset = ImageFolder(
|
||||
root=data_path.joinpath("validation"),
|
||||
transform=transforms.Compose([
|
||||
transforms.Resize((224, 224)),
|
||||
transforms.ToTensor(),
|
||||
normalize,
|
||||
]),
|
||||
)
|
||||
|
||||
self.train_dataset = train_dataset
|
||||
self.valid_dataset = valid_dataset
|
||||
|
||||
def __dataloader(self, train: bool):
|
||||
"""Train/validation loaders."""
|
||||
|
||||
_dataset = self.train_dataset if train else self.valid_dataset
|
||||
loader = DataLoader(dataset=_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=train)
|
||||
|
||||
return loader
|
||||
|
||||
def train_dataloader(self):
|
||||
log.info("Training data loaded.")
|
||||
return self.__dataloader(train=True)
|
||||
|
||||
def val_dataloader(self):
|
||||
log.info("Validation data loaded.")
|
||||
return self.__dataloader(train=False)
|
||||
|
||||
@staticmethod
|
||||
def add_model_specific_args(parent_parser):
|
||||
parser = argparse.ArgumentParser(parents=[parent_parser])
|
||||
|
@ -263,7 +279,7 @@ class TransferLearningModel(pl.LightningModule):
|
|||
"--epochs", default=15, type=int, metavar="N", help="total number of epochs", dest="nb_epochs"
|
||||
)
|
||||
parser.add_argument("--batch-size", default=8, type=int, metavar="B", help="batch size", dest="batch_size")
|
||||
parser.add_argument("--gpus", type=int, default=1, help="number of gpus to use")
|
||||
parser.add_argument("--gpus", type=int, default=0, help="number of gpus to use")
|
||||
parser.add_argument(
|
||||
"--lr", "--learning-rate", default=1e-3, type=float, metavar="LR", help="initial learning rate", dest="lr"
|
||||
)
|
||||
|
@ -275,12 +291,9 @@ class TransferLearningModel(pl.LightningModule):
|
|||
help="Factor by which the learning rate is reduced at each milestone",
|
||||
dest="lr_scheduler_gamma",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-workers", default=6, type=int, metavar="W", help="number of CPU workers", dest="num_workers"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--train-bn",
|
||||
default=True,
|
||||
default=False,
|
||||
type=bool,
|
||||
metavar="TB",
|
||||
help="Whether the BatchNorm layers should be trainable",
|
||||
|
@ -303,21 +316,22 @@ def main(args: argparse.Namespace) -> None:
|
|||
to a temporary directory.
|
||||
"""
|
||||
|
||||
with TemporaryDirectory(dir=args.root_data_path) as tmp_dir:
|
||||
datamodule = CatDogImageDataModule(
|
||||
dl_path=os.path.join(args.root_data_path, 'data'), batch_size=args.batch_size, num_workers=args.num_workers
|
||||
)
|
||||
model = TransferLearningModel(**vars(args))
|
||||
finetuning_callback = MilestonesFinetuning(milestones=args.milestones)
|
||||
|
||||
model = TransferLearningModel(dl_path=tmp_dir, **vars(args))
|
||||
finetuning_callback = MilestonesFinetuningCallback(milestones=args.milestones)
|
||||
trainer = pl.Trainer(
|
||||
weights_summary=None,
|
||||
progress_bar_refresh_rate=1,
|
||||
num_sanity_val_steps=0,
|
||||
gpus=args.gpus,
|
||||
max_epochs=args.nb_epochs,
|
||||
callbacks=[finetuning_callback]
|
||||
)
|
||||
|
||||
trainer = pl.Trainer(
|
||||
weights_summary=None,
|
||||
progress_bar_refresh_rate=1,
|
||||
num_sanity_val_steps=0,
|
||||
gpus=args.gpus,
|
||||
max_epochs=args.nb_epochs,
|
||||
callbacks=[finetuning_callback]
|
||||
)
|
||||
|
||||
trainer.fit(model)
|
||||
trainer.fit(model, datamodule=datamodule)
|
||||
|
||||
|
||||
def get_args() -> argparse.Namespace:
|
||||
|
@ -331,6 +345,7 @@ def get_args() -> argparse.Namespace:
|
|||
dest="root_data_path",
|
||||
)
|
||||
parser = TransferLearningModel.add_model_specific_args(parent_parser)
|
||||
parser = CatDogImageDataModule.add_argparse_args(parser)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue