readme: logo 800px (#17108)
This commit is contained in:
parent
e9937476a2
commit
13e2ddcfba
57
README.md
57
README.md
|
@ -1,6 +1,6 @@
|
|||
<div align="center">
|
||||
|
||||
<img alt="Lightning" src="https://pl-public-data.s3.amazonaws.com/assets_lightning/LightningColor.png" width="600px" style="max-width: 100%;">
|
||||
<img alt="Lightning" src="https://pl-public-data.s3.amazonaws.com/assets_lightning/LightningColor.png" width="800px" style="max-width: 100%;">
|
||||
|
||||
<br/>
|
||||
<br/>
|
||||
|
@ -9,7 +9,7 @@
|
|||
|
||||
**NEW- Lightning 2.0 is featuring a clean and stable API!!**
|
||||
|
||||
----
|
||||
______________________________________________________________________
|
||||
|
||||
<p align="center">
|
||||
<a href="https://www.lightning.ai/">Lightning.ai</a> •
|
||||
|
@ -40,7 +40,6 @@
|
|||
|
||||
</div>
|
||||
|
||||
|
||||
## Install Lightning
|
||||
|
||||
Simple installation from PyPI
|
||||
|
@ -92,7 +91,7 @@ pip install -iU https://test.pypi.org/simple/ pytorch-lightning
|
|||
</details>
|
||||
<!-- end skipping PyPI description -->
|
||||
|
||||
----
|
||||
______________________________________________________________________
|
||||
|
||||
## Lightning has 3 core packages
|
||||
|
||||
|
@ -106,7 +105,7 @@ Lightning gives you granular control over how much abstraction you want to add o
|
|||
<img src="https://pl-public-data.s3.amazonaws.com/assets_lightning/continuum.png" width="80%">
|
||||
</div>
|
||||
|
||||
----
|
||||
______________________________________________________________________
|
||||
|
||||
# PyTorch Lightning: Train and Deploy PyTorch at Scale
|
||||
|
||||
|
@ -114,7 +113,7 @@ PyTorch Lightning is just organized PyTorch - Lightning disentangles PyTorch cod
|
|||
|
||||
![PT to PL](docs/source-pytorch/_static/images/general/pl_quick_start_full_compressed.gif)
|
||||
|
||||
----
|
||||
______________________________________________________________________
|
||||
|
||||
### Hello simple model
|
||||
|
||||
|
@ -130,6 +129,7 @@ import lightning as L
|
|||
# A LightningModule (nn.Module subclass) defines a full *system*
|
||||
# (ie: an LLM, difussion model, autoencoder, or simple image classifier).
|
||||
|
||||
|
||||
class LitAutoEncoder(L.LightningModule):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
@ -155,6 +155,7 @@ class LitAutoEncoder(L.LightningModule):
|
|||
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
|
||||
return optimizer
|
||||
|
||||
|
||||
# -------------------
|
||||
# Step 2: Define data
|
||||
# -------------------
|
||||
|
@ -170,11 +171,13 @@ trainer.fit(autoencoder, data.DataLoader(train), data.DataLoader(val))
|
|||
```
|
||||
|
||||
Run the model on your terminal
|
||||
``` bash
|
||||
|
||||
```bash
|
||||
pip install torchvision
|
||||
python main.py
|
||||
```
|
||||
----
|
||||
|
||||
______________________________________________________________________
|
||||
|
||||
## Advanced features
|
||||
|
||||
|
@ -197,6 +200,7 @@ trainer = Trainer(accelerator="gpu", devices=8)
|
|||
# 256 GPUs
|
||||
trainer = Trainer(accelerator="gpu", devices=8, num_nodes=32)
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
@ -206,6 +210,7 @@ trainer = Trainer(accelerator="gpu", devices=8, num_nodes=32)
|
|||
# no code changes needed
|
||||
trainer = Trainer(accelerator="tpu", devices=8)
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
@ -246,12 +251,13 @@ trainer = Trainer(logger=loggers.NeptuneLogger())
|
|||
|
||||
<details>
|
||||
|
||||
<summary>Early Stopping</summary>
|
||||
<summary>Early Stopping</summary>
|
||||
|
||||
```python
|
||||
es = EarlyStopping(monitor="val_loss")
|
||||
trainer = Trainer(callbacks=[es])
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
@ -261,6 +267,7 @@ trainer = Trainer(callbacks=[es])
|
|||
checkpointing = ModelCheckpoint(monitor="val_loss")
|
||||
trainer = Trainer(callbacks=[checkpointing])
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
@ -271,6 +278,7 @@ trainer = Trainer(callbacks=[checkpointing])
|
|||
autoencoder = LitAutoEncoder()
|
||||
torch.jit.save(autoencoder.to_torchscript(), "model.pt")
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
@ -287,7 +295,7 @@ with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as tmpfile:
|
|||
|
||||
</details>
|
||||
|
||||
----
|
||||
______________________________________________________________________
|
||||
|
||||
## Advantages over unstructured PyTorch
|
||||
|
||||
|
@ -300,13 +308,13 @@ with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as tmpfile:
|
|||
- [Tested rigorously with every new PR](https://github.com/Lightning-AI/lightning/tree/master/tests). We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs.
|
||||
- Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch).
|
||||
|
||||
----
|
||||
______________________________________________________________________
|
||||
|
||||
<div align="center">
|
||||
<a href="https://lightning.ai/docs/pytorch/stable/">Read the PyTorch Lightning docs</a>
|
||||
</div>
|
||||
|
||||
----
|
||||
______________________________________________________________________
|
||||
|
||||
# Lightning Fabric: Expert control.
|
||||
|
||||
|
@ -314,7 +322,6 @@ Run on any device at any scale with expert-level control over PyTorch training l
|
|||
|
||||
Fabric is designed for the most complex models like foundation model scaling, LLMs, diffussion, transformers, reinforcement learning, active learning.
|
||||
|
||||
|
||||
```diff
|
||||
+ import lightning as L
|
||||
import torch
|
||||
|
@ -354,13 +361,13 @@ Fabric is designed for the most complex models like foundation model scaling, LL
|
|||
- Designed with multi-billion parameter models in mind
|
||||
- Build your own custom Trainer using Fabric primitives for training checkpointing, logging, and more
|
||||
|
||||
----
|
||||
______________________________________________________________________
|
||||
|
||||
<div align="center">
|
||||
<a href="https://lightning.ai/docs/fabric/stable/">Read the Lightning Fabric docs</a>
|
||||
</div>
|
||||
|
||||
----
|
||||
______________________________________________________________________
|
||||
|
||||
# Lightning Apps: Build AI products and ML workflows
|
||||
|
||||
|
@ -376,24 +383,28 @@ Lightning Apps remove the cloud infrastructure boilerplate so you can focus on s
|
|||
# app.py
|
||||
import lightning as L
|
||||
|
||||
|
||||
class TrainComponent(L.LightningWork):
|
||||
def run(self, x):
|
||||
print(f'train a model on {x}')
|
||||
print(f"train a model on {x}")
|
||||
|
||||
|
||||
class AnalyzeComponent(L.LightningWork):
|
||||
def run(self, x):
|
||||
print(f'analyze model on {x}')
|
||||
print(f"analyze model on {x}")
|
||||
|
||||
|
||||
class WorkflowOrchestrator(L.LightningFlow):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.train = TrainComponent(cloud_compute=L.CloudCompute('cpu'))
|
||||
self.analyze = AnalyzeComponent(cloud_compute=L.CloudCompute('gpu'))
|
||||
self.train = TrainComponent(cloud_compute=L.CloudCompute("cpu"))
|
||||
self.analyze = AnalyzeComponent(cloud_compute=L.CloudCompute("gpu"))
|
||||
|
||||
def run(self):
|
||||
self.train.run("CPU machine 1")
|
||||
self.analyze.run("GPU machine 2")
|
||||
|
||||
|
||||
app = L.LightningApp(WorkflowOrchestrator())
|
||||
```
|
||||
|
||||
|
@ -407,13 +418,13 @@ lightning run app app.py --setup --cloud
|
|||
lightning run app app.py
|
||||
```
|
||||
|
||||
----
|
||||
______________________________________________________________________
|
||||
|
||||
<div align="center">
|
||||
<a href="https://lightning.ai/docs/app/stable/">Read the Lightning Apps docs</a>
|
||||
</div>
|
||||
|
||||
----
|
||||
______________________________________________________________________
|
||||
|
||||
## Examples
|
||||
|
||||
|
@ -444,7 +455,7 @@ lightning run app app.py
|
|||
- [Logistic Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#logistic-regression)
|
||||
- [Linear Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#linear-regression)
|
||||
|
||||
----
|
||||
______________________________________________________________________
|
||||
|
||||
## Continuous Integration
|
||||
|
||||
|
@ -470,7 +481,7 @@ Lightning is rigorously tested across multiple CPUs, GPUs, TPUs, IPUs, and HPUs
|
|||
</center>
|
||||
</details>
|
||||
|
||||
----
|
||||
______________________________________________________________________
|
||||
|
||||
## Community
|
||||
|
||||
|
|
Loading…
Reference in New Issue