fixed correct module on hpc save
This commit is contained in:
parent
549a158ec0
commit
10330f1991
|
@ -21,53 +21,93 @@ np.random.seed(SEED)
|
|||
# ------------------------------------------------------------------------
|
||||
# TESTS
|
||||
# ------------------------------------------------------------------------
|
||||
def test_hpc_save_load_cpu_models():
|
||||
def test_cpu_model():
|
||||
"""
|
||||
Make sure DP works
|
||||
Make sure model trains on CPU
|
||||
:return:
|
||||
"""
|
||||
|
||||
trainer_options = dict(
|
||||
progress_bar=False,
|
||||
experiment=get_exp(),
|
||||
max_nb_epochs=1,
|
||||
train_percent_check=0.4,
|
||||
val_percent_check=0.4
|
||||
)
|
||||
|
||||
model, hparams = get_model()
|
||||
|
||||
run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
|
||||
|
||||
|
||||
def test_all_features_cpu_model():
|
||||
"""
|
||||
Test each of the trainer options
|
||||
:return:
|
||||
"""
|
||||
|
||||
trainer_options = dict(
|
||||
gradient_clip=1.0,
|
||||
overfit_pct=0.20,
|
||||
track_grad_norm=2,
|
||||
print_nan_grads=True,
|
||||
progress_bar=False,
|
||||
experiment=get_exp(),
|
||||
max_nb_epochs=1,
|
||||
train_percent_check=0.4,
|
||||
val_percent_check=0.4
|
||||
)
|
||||
|
||||
model, hparams = get_model()
|
||||
run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
|
||||
|
||||
|
||||
def test_early_stopping_cpu_model():
|
||||
"""
|
||||
Test each of the trainer options
|
||||
:return:
|
||||
"""
|
||||
|
||||
stopping = EarlyStopping()
|
||||
trainer_options = dict(
|
||||
early_stop_callback=stopping,
|
||||
gradient_clip=1.0,
|
||||
overfit_pct=0.20,
|
||||
track_grad_norm=2,
|
||||
print_nan_grads=True,
|
||||
progress_bar=False,
|
||||
experiment=get_exp(),
|
||||
max_nb_epochs=1,
|
||||
train_percent_check=0.4,
|
||||
val_percent_check=0.4
|
||||
)
|
||||
|
||||
model, hparams = get_model()
|
||||
run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
|
||||
|
||||
|
||||
def test_single_gpu_model():
|
||||
"""
|
||||
Make sure single GPU works (DP mode)
|
||||
:return:
|
||||
"""
|
||||
if not torch.cuda.is_available():
|
||||
warnings.warn('test_multi_gpu_model_dp cannot run. Rerun on a GPU node to run this test')
|
||||
return
|
||||
if not torch.cuda.device_count() > 1:
|
||||
warnings.warn('test_multi_gpu_model_dp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
||||
warnings.warn('test_single_gpu_model cannot run. Rerun on a GPU node to run this test')
|
||||
return
|
||||
model, hparams = get_model()
|
||||
|
||||
trainer_options = dict(
|
||||
progress_bar=False,
|
||||
max_nb_epochs=1,
|
||||
train_percent_check=0.1,
|
||||
val_percent_check=0.1,
|
||||
gpus=[0]
|
||||
)
|
||||
|
||||
save_dir = init_save_dir()
|
||||
|
||||
# exp file to get meta
|
||||
exp = get_exp(False)
|
||||
exp.argparse(hparams)
|
||||
exp.save()
|
||||
|
||||
# exp file to get weights
|
||||
checkpoint = ModelCheckpoint(save_dir)
|
||||
|
||||
# add these to the trainer options
|
||||
trainer_options['checkpoint_callback'] = checkpoint
|
||||
trainer_options['experiment'] = exp
|
||||
|
||||
# fit model
|
||||
trainer = Trainer(**trainer_options)
|
||||
result = trainer.fit(model)
|
||||
|
||||
# correct result and ok accuracy
|
||||
assert result == 1, 'amp + ddp model failed to complete'
|
||||
|
||||
trainer.hpc_save(save_dir, exp)
|
||||
trainer.hpc_load(save_dir, on_gpu=True)
|
||||
|
||||
clear_save_dir()
|
||||
run_gpu_model_test(trainer_options, model, hparams)
|
||||
|
||||
|
||||
def test_hpc_save_load_gpu_models():
|
||||
def test_multi_gpu_model_dp():
|
||||
"""
|
||||
Make sure DP works
|
||||
:return:
|
||||
|
@ -87,257 +127,122 @@ def test_hpc_save_load_gpu_models():
|
|||
gpus=[0, 1]
|
||||
)
|
||||
|
||||
save_dir = init_save_dir()
|
||||
run_gpu_model_test(trainer_options, model, hparams)
|
||||
|
||||
# exp file to get meta
|
||||
exp = get_exp(False)
|
||||
exp.argparse(hparams)
|
||||
# test memory helper functions
|
||||
memory.get_gpu_memory_map()
|
||||
|
||||
|
||||
def test_amp_gpu_dp():
|
||||
"""
|
||||
Make sure DP + AMP work
|
||||
:return:
|
||||
"""
|
||||
if not torch.cuda.is_available():
|
||||
warnings.warn('test_amp_gpu_dp cannot run. Rerun on a GPU node to run this test')
|
||||
return
|
||||
if not torch.cuda.device_count() > 1:
|
||||
warnings.warn('test_amp_gpu_dp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
||||
return
|
||||
model, hparams = get_model()
|
||||
trainer_options = dict(
|
||||
max_nb_epochs=1,
|
||||
gpus='0, 1', # test init with gpu string
|
||||
distributed_backend='dp',
|
||||
use_amp=True
|
||||
)
|
||||
with pytest.raises(MisconfigurationException):
|
||||
run_gpu_model_test(trainer_options, model, hparams)
|
||||
|
||||
|
||||
def test_multi_gpu_model_ddp():
|
||||
"""
|
||||
Make sure DDP works
|
||||
:return:
|
||||
"""
|
||||
if not torch.cuda.is_available():
|
||||
warnings.warn('test_multi_gpu_model_ddp cannot run. Rerun on a GPU node to run this test')
|
||||
return
|
||||
if not torch.cuda.device_count() > 1:
|
||||
warnings.warn('test_multi_gpu_model_ddp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
||||
return
|
||||
|
||||
os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0])
|
||||
model, hparams = get_model()
|
||||
trainer_options = dict(
|
||||
progress_bar=False,
|
||||
max_nb_epochs=1,
|
||||
train_percent_check=0.1,
|
||||
val_percent_check=0.1,
|
||||
gpus=[0, 1],
|
||||
distributed_backend='ddp'
|
||||
)
|
||||
|
||||
run_gpu_model_test(trainer_options, model, hparams)
|
||||
|
||||
|
||||
def test_amp_gpu_ddp():
|
||||
"""
|
||||
Make sure DDP + AMP work
|
||||
:return:
|
||||
"""
|
||||
if not torch.cuda.is_available():
|
||||
warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a GPU node to run this test')
|
||||
return
|
||||
if not torch.cuda.device_count() > 1:
|
||||
warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
||||
return
|
||||
|
||||
os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0])
|
||||
|
||||
hparams = get_hparams()
|
||||
model = LightningTestModel(hparams)
|
||||
|
||||
trainer_options = dict(
|
||||
progress_bar=True,
|
||||
max_nb_epochs=1,
|
||||
gpus=[0, 1],
|
||||
distributed_backend='ddp',
|
||||
use_amp=True
|
||||
)
|
||||
|
||||
run_gpu_model_test(trainer_options, model, hparams)
|
||||
|
||||
|
||||
def test_ddp_sampler_error():
|
||||
"""
|
||||
Make sure DDP + AMP work
|
||||
:return:
|
||||
"""
|
||||
if not torch.cuda.is_available():
|
||||
warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a GPU node to run this test')
|
||||
return
|
||||
if not torch.cuda.device_count() > 1:
|
||||
warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
||||
return
|
||||
|
||||
os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0])
|
||||
|
||||
hparams = get_hparams()
|
||||
model = LightningTestModel(hparams, force_remove_distributed_sampler=True)
|
||||
|
||||
exp = get_exp(True)
|
||||
exp.save()
|
||||
|
||||
# exp file to get weights
|
||||
checkpoint = ModelCheckpoint(save_dir)
|
||||
trainer = Trainer(
|
||||
experiment=exp,
|
||||
progress_bar=False,
|
||||
max_nb_epochs=1,
|
||||
gpus=[0, 1],
|
||||
distributed_backend='ddp',
|
||||
use_amp=True
|
||||
)
|
||||
|
||||
# add these to the trainer options
|
||||
trainer_options['checkpoint_callback'] = checkpoint
|
||||
trainer_options['experiment'] = exp
|
||||
|
||||
# fit model
|
||||
trainer = Trainer(**trainer_options)
|
||||
result = trainer.fit(model)
|
||||
|
||||
# correct result and ok accuracy
|
||||
assert result == 1, 'amp + ddp model failed to complete'
|
||||
|
||||
trainer.hpc_save(save_dir, exp)
|
||||
trainer.hpc_load(save_dir, on_gpu=True)
|
||||
with pytest.raises(MisconfigurationException):
|
||||
trainer.get_dataloaders(model)
|
||||
|
||||
clear_save_dir()
|
||||
|
||||
#
|
||||
# def test_cpu_model():
|
||||
# """
|
||||
# Make sure model trains on CPU
|
||||
# :return:
|
||||
# """
|
||||
#
|
||||
# trainer_options = dict(
|
||||
# progress_bar=False,
|
||||
# experiment=get_exp(),
|
||||
# max_nb_epochs=1,
|
||||
# train_percent_check=0.4,
|
||||
# val_percent_check=0.4
|
||||
# )
|
||||
#
|
||||
# model, hparams = get_model()
|
||||
#
|
||||
# run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
|
||||
#
|
||||
#
|
||||
# def test_all_features_cpu_model():
|
||||
# """
|
||||
# Test each of the trainer options
|
||||
# :return:
|
||||
# """
|
||||
#
|
||||
# trainer_options = dict(
|
||||
# gradient_clip=1.0,
|
||||
# overfit_pct=0.20,
|
||||
# track_grad_norm=2,
|
||||
# print_nan_grads=True,
|
||||
# progress_bar=False,
|
||||
# experiment=get_exp(),
|
||||
# max_nb_epochs=1,
|
||||
# train_percent_check=0.4,
|
||||
# val_percent_check=0.4
|
||||
# )
|
||||
#
|
||||
# model, hparams = get_model()
|
||||
# run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
|
||||
#
|
||||
#
|
||||
# def test_early_stopping_cpu_model():
|
||||
# """
|
||||
# Test each of the trainer options
|
||||
# :return:
|
||||
# """
|
||||
#
|
||||
# stopping = EarlyStopping()
|
||||
# trainer_options = dict(
|
||||
# early_stop_callback=stopping,
|
||||
# gradient_clip=1.0,
|
||||
# overfit_pct=0.20,
|
||||
# track_grad_norm=2,
|
||||
# print_nan_grads=True,
|
||||
# progress_bar=False,
|
||||
# experiment=get_exp(),
|
||||
# max_nb_epochs=1,
|
||||
# train_percent_check=0.4,
|
||||
# val_percent_check=0.4
|
||||
# )
|
||||
#
|
||||
# model, hparams = get_model()
|
||||
# run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
|
||||
#
|
||||
#
|
||||
# def test_single_gpu_model():
|
||||
# """
|
||||
# Make sure single GPU works (DP mode)
|
||||
# :return:
|
||||
# """
|
||||
# if not torch.cuda.is_available():
|
||||
# warnings.warn('test_single_gpu_model cannot run. Rerun on a GPU node to run this test')
|
||||
# return
|
||||
# model, hparams = get_model()
|
||||
#
|
||||
# trainer_options = dict(
|
||||
# progress_bar=False,
|
||||
# max_nb_epochs=1,
|
||||
# train_percent_check=0.1,
|
||||
# val_percent_check=0.1,
|
||||
# gpus=[0]
|
||||
# )
|
||||
#
|
||||
# run_gpu_model_test(trainer_options, model, hparams)
|
||||
#
|
||||
#
|
||||
#
|
||||
#
|
||||
# def test_multi_gpu_model_dp():
|
||||
# """
|
||||
# Make sure DP works
|
||||
# :return:
|
||||
# """
|
||||
# if not torch.cuda.is_available():
|
||||
# warnings.warn('test_multi_gpu_model_dp cannot run. Rerun on a GPU node to run this test')
|
||||
# return
|
||||
# if not torch.cuda.device_count() > 1:
|
||||
# warnings.warn('test_multi_gpu_model_dp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
||||
# return
|
||||
# model, hparams = get_model()
|
||||
# trainer_options = dict(
|
||||
# progress_bar=False,
|
||||
# max_nb_epochs=1,
|
||||
# train_percent_check=0.1,
|
||||
# val_percent_check=0.1,
|
||||
# gpus=[0, 1]
|
||||
# )
|
||||
#
|
||||
# run_gpu_model_test(trainer_options, model, hparams)
|
||||
#
|
||||
# # test memory helper functions
|
||||
# memory.get_gpu_memory_map()
|
||||
#
|
||||
#
|
||||
# def test_amp_gpu_dp():
|
||||
# """
|
||||
# Make sure DP + AMP work
|
||||
# :return:
|
||||
# """
|
||||
# if not torch.cuda.is_available():
|
||||
# warnings.warn('test_amp_gpu_dp cannot run. Rerun on a GPU node to run this test')
|
||||
# return
|
||||
# if not torch.cuda.device_count() > 1:
|
||||
# warnings.warn('test_amp_gpu_dp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
||||
# return
|
||||
# model, hparams = get_model()
|
||||
# trainer_options = dict(
|
||||
# max_nb_epochs=1,
|
||||
# gpus='0, 1', # test init with gpu string
|
||||
# distributed_backend='dp',
|
||||
# use_amp=True
|
||||
# )
|
||||
# with pytest.raises(MisconfigurationException):
|
||||
# run_gpu_model_test(trainer_options, model, hparams)
|
||||
#
|
||||
#
|
||||
# def test_multi_gpu_model_ddp():
|
||||
# """
|
||||
# Make sure DDP works
|
||||
# :return:
|
||||
# """
|
||||
# if not torch.cuda.is_available():
|
||||
# warnings.warn('test_multi_gpu_model_ddp cannot run. Rerun on a GPU node to run this test')
|
||||
# return
|
||||
# if not torch.cuda.device_count() > 1:
|
||||
# warnings.warn('test_multi_gpu_model_ddp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
||||
# return
|
||||
#
|
||||
# os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0])
|
||||
# model, hparams = get_model()
|
||||
# trainer_options = dict(
|
||||
# progress_bar=False,
|
||||
# max_nb_epochs=1,
|
||||
# train_percent_check=0.1,
|
||||
# val_percent_check=0.1,
|
||||
# gpus=[0, 1],
|
||||
# distributed_backend='ddp'
|
||||
# )
|
||||
#
|
||||
# run_gpu_model_test(trainer_options, model, hparams)
|
||||
#
|
||||
#
|
||||
# def test_amp_gpu_ddp():
|
||||
# """
|
||||
# Make sure DDP + AMP work
|
||||
# :return:
|
||||
# """
|
||||
# if not torch.cuda.is_available():
|
||||
# warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a GPU node to run this test')
|
||||
# return
|
||||
# if not torch.cuda.device_count() > 1:
|
||||
# warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
||||
# return
|
||||
#
|
||||
# os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0])
|
||||
#
|
||||
# hparams = get_hparams()
|
||||
# model = LightningTestModel(hparams)
|
||||
#
|
||||
# trainer_options = dict(
|
||||
# progress_bar=True,
|
||||
# max_nb_epochs=1,
|
||||
# gpus=[0, 1],
|
||||
# distributed_backend='ddp',
|
||||
# use_amp=True
|
||||
# )
|
||||
#
|
||||
# run_gpu_model_test(trainer_options, model, hparams)
|
||||
#
|
||||
#
|
||||
# def test_ddp_sampler_error():
|
||||
# """
|
||||
# Make sure DDP + AMP work
|
||||
# :return:
|
||||
# """
|
||||
# if not torch.cuda.is_available():
|
||||
# warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a GPU node to run this test')
|
||||
# return
|
||||
# if not torch.cuda.device_count() > 1:
|
||||
# warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
||||
# return
|
||||
#
|
||||
# os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0])
|
||||
#
|
||||
# hparams = get_hparams()
|
||||
# model = LightningTestModel(hparams, force_remove_distributed_sampler=True)
|
||||
#
|
||||
# exp = get_exp(True)
|
||||
# exp.save()
|
||||
#
|
||||
# trainer = Trainer(
|
||||
# experiment=exp,
|
||||
# progress_bar=False,
|
||||
# max_nb_epochs=1,
|
||||
# gpus=[0, 1],
|
||||
# distributed_backend='ddp',
|
||||
# use_amp=True
|
||||
# )
|
||||
#
|
||||
# with pytest.raises(MisconfigurationException):
|
||||
# trainer.get_dataloaders(model)
|
||||
#
|
||||
# clear_save_dir()
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------
|
||||
# UTILS
|
||||
|
@ -370,6 +275,10 @@ def run_gpu_model_test(trainer_options, model, hparams, on_gpu=True):
|
|||
# test model preds
|
||||
run_prediction(model.test_dataloader, pretrained_model)
|
||||
|
||||
# test HPC loading / saving
|
||||
trainer.hpc_save(save_dir, exp)
|
||||
trainer.hpc_load(save_dir, on_gpu=True)
|
||||
|
||||
clear_save_dir()
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue