updated docs

This commit is contained in:
William Falcon 2020-03-06 14:53:27 -05:00 committed by J. Borovec
parent be89eb07c8
commit 0d5f7671e0
2 changed files with 32 additions and 4 deletions

View File

@ -55,6 +55,21 @@ Now we can parametrize the LightningModule.
.. note:: Bonus! if (hparams) is in your module, Lightning will save it into the checkpoint and restore your
model using those hparams exactly.
And we can also add all the flags available in the Trainer to the Argparser.
.. code-block:: python
# add all the available Trainer options to the ArgParser
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
And now you can start your program with
.. code-block:: bash
# now you can use any trainer flag
$ python main.py --num_nodes 2 --gpus 8
Trainer args
^^^^^^^^^^^^

View File

@ -578,7 +578,7 @@ Notice the epoch is MUCH faster!
Hyperparameters
---------------
Normally, we don't hard-code the values to a model. We usually use the command line to
modify the network. The `Trainer` can add all the available options to an ArgumentParser.
modify the network.
.. code-block:: python
@ -591,9 +591,6 @@ modify the network. The `Trainer` can add all the available options to an Argume
parser.add_argument('--layer_2_dim', type=int, default=256)
parser.add_argument('--batch_size', type=int, default=64)
# add all the available options to the trainer
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
Now we can parametrize the LightningModule.
@ -626,6 +623,22 @@ Now we can parametrize the LightningModule.
.. note:: Bonus! if (hparams) is in your module, Lightning will save it into the checkpoint and restore your
model using those hparams exactly.
And we can also add all the flags available in the Trainer to the Argparser.
.. code-block:: python
# add all the available Trainer options to the ArgParser
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
And now you can start your program with
.. code-block:: bash
# now you can use any trainer flag
$ python main.py --num_nodes 2 --gpus 8
For a full guide on using hyperparameters, `check out the hyperparameters docs <hyperparameters.rst>`_.
---------