Handle torch.jit scripted modules in layer summary (#6511)

This commit is contained in:
Adrian Wälchli 2021-03-15 03:17:42 +01:00 committed by GitHub
parent 0544efd453
commit 02fa32b7bc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 34 additions and 5 deletions

View File

@ -140,6 +140,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Fixed LightningModule `all_gather` on cpu tensors ([#6416](https://github.com/PyTorchLightning/pytorch-lightning/pull/6416))
- Fixed an exception in the layer summary when the model contains torch.jit scripted submodules ([#6511](https://github.com/PyTorchLightning/pytorch-lightning/pull/6511))
## [1.2.3] - 2021-03-09
### Fixed

View File

@ -16,7 +16,7 @@ import os
import shutil
import subprocess
from collections import OrderedDict
from typing import Any, Dict, List, Tuple, Union
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
@ -71,14 +71,15 @@ class LayerSummary(object):
def __del__(self):
self.detach_hook()
def _register_hook(self) -> RemovableHandle:
def _register_hook(self) -> Optional[RemovableHandle]:
"""
Registers a hook on the module that computes the input- and output size(s) on the first forward pass.
If the hook is called, it will remove itself from the from the module, meaning that
recursive models will only record their input- and output shapes once.
Registering hooks on :class:`~torch.jit.ScriptModule` is not supported.
Return:
A handle for the installed hook.
A handle for the installed hook, or ``None`` if registering the hook is not possible.
"""
def hook(module, inp, out):
@ -88,7 +89,10 @@ class LayerSummary(object):
self._out_size = parse_batch_shape(out)
self._hook_handle.remove()
return self._module.register_forward_hook(hook)
handle = None
if not isinstance(self._module, torch.jit.ScriptModule):
handle = self._module.register_forward_hook(hook)
return handle
def detach_hook(self):
"""

View File

@ -88,6 +88,19 @@ class MixedDtypeModel(LightningModule):
return self.reduce(self.embed(x))
class PartialScriptModel(LightningModule):
""" A model which contains scripted layers. """
def __init__(self):
super().__init__()
self.layer1 = torch.jit.script(nn.Linear(5, 3))
self.layer2 = nn.Linear(3, 2)
self.example_input_array = torch.rand(2, 5)
def forward(self, x):
return self.layer2(self.layer1(x))
def test_invalid_weights_summmary():
""" Test that invalid value for weights_summary raises an error. """
with pytest.raises(MisconfigurationException, match='`mode` can be None, .* got temp'):
@ -214,6 +227,15 @@ def test_summary_layer_types(mode):
]
@pytest.mark.parametrize('mode', [ModelSummary.MODE_FULL, ModelSummary.MODE_TOP])
def test_summary_with_scripted_modules(mode):
model = PartialScriptModel()
summary = model.summarize(mode=mode)
assert summary.layer_types == ["RecursiveScriptModule", "Linear"]
assert summary.in_sizes == [UNKNOWN_SIZE, [2, 3]]
assert summary.out_sizes == [UNKNOWN_SIZE, [2, 2]]
@pytest.mark.parametrize('mode', [ModelSummary.MODE_FULL, ModelSummary.MODE_TOP])
@pytest.mark.parametrize(['example_input', 'expected_size'], [
pytest.param([], UNKNOWN_SIZE),
@ -265,7 +287,7 @@ def test_empty_model_size(mode):
@RunIf(min_gpus=1, amp_native=True)
def test_model_size_precision(monkeypatch, tmpdir):
def test_model_size_precision(tmpdir):
""" Test model size for half and full precision. """
model = PreCalculatedModel()