Fix/mismatched toggle optimizer (#7563)

* fix: avoid potential mismatched toggling of optimzier
Refs #7405

chore: update CHANGELOG

[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

fix: resolve a confict

chore: update changelog

* feat: add a test that fails in master

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix typo in tests/trainer/optimization/test_multiple_optimizers.py

Co-authored-by: ananthsub <ananth.subramaniam@gmail.com>

* Polish tests/trainer/optimization/test_multiple_optimizers.py

Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>

* Polish tests/trainer/optimization/test_multiple_optimizers.py

Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>

* fix: change placeholder in optimizer_step from positional args to keyword args

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: ananthsub <ananth.subramaniam@gmail.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
This commit is contained in:
Xinyao(Alvin) Sun 2021-05-22 20:30:28 -06:00 committed by GitHub
parent 2242423b75
commit 01109cdf0c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 69 additions and 5 deletions

View File

@ -40,6 +40,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
### Changed
- Changed calling of `untoggle_optimizer(opt_idx)` out of the closure function ([#7563](https://github.com/PyTorchLightning/pytorch-lightning/pull/7563)
- Changed the `Trainer`'s `checkpoint_callback` argument to allow only boolean values ([#7539](https://github.com/PyTorchLightning/pytorch-lightning/pull/7539))

View File

@ -724,7 +724,6 @@ class TrainLoop:
# -------------------
# calculate loss (train step + train step end)
# -------------------
# automatic_optimization=True: perform ddp sync only when performing optimizer_step
# automatic_optimization=False: don't block synchronization here
with self.block_ddp_sync_behaviour():
@ -737,6 +736,9 @@ class TrainLoop:
else:
if self.trainer.lightning_module.automatic_optimization:
self.optimizer_step(optimizer, opt_idx, batch_idx, closure)
if len(self.trainer.optimizers) > 1:
# revert back to previous state
self.trainer.lightning_module.untoggle_optimizer(opt_idx)
else:
result = self.training_step(split_batch, batch_idx, opt_idx, self._hiddens)
@ -837,10 +839,6 @@ class TrainLoop:
"training_step returned None. If this was on purpose, ignore this warning..."
)
if len(self.trainer.optimizers) > 1:
# revert back to previous state
self.trainer.lightning_module.untoggle_optimizer(opt_idx)
return result
def _check_finite(self, loss: torch.Tensor) -> None:

View File

@ -168,3 +168,68 @@ def test_multiple_optimizers_no_opt_idx_argument(tmpdir):
with pytest.raises(ValueError, match='`training_step` is missing the `optimizer_idx`'):
trainer.fit(TestModel())
def test_custom_optimizer_step_with_multiple_optimizers(tmpdir):
"""
This tests ensures custom optimizer_step works,
even when optimizer.step is not called for a particular optimizer
"""
class TestModel(BoringModel):
training_step_called = [0, 0]
optimizer_step_called = [0, 0]
def __init__(self):
super().__init__()
self.layer_a = torch.nn.Linear(32, 2)
self.layer_b = torch.nn.Linear(32, 2)
def configure_optimizers(self):
opt_a = torch.optim.SGD(self.layer_a.parameters(), lr=0.001)
opt_b = torch.optim.SGD(self.layer_b.parameters(), lr=0.001)
return opt_a, opt_b
def training_step(self, batch, batch_idx, optimizer_idx):
self.training_step_called[optimizer_idx] += 1
x = self.layer_a(batch[0]) if (optimizer_idx == 0) else self.layer_b(batch[0])
loss = torch.nn.functional.mse_loss(x, torch.ones_like(x))
return loss
def training_epoch_end(self, outputs) -> None:
# outputs should be an array with an entry per optimizer
assert len(outputs) == 2
def optimizer_step(
self,
epoch,
batch_idx,
optimizer,
optimizer_idx,
optimizer_closure,
**_,
):
# update first optimizer every step
if optimizer_idx == 0:
self.optimizer_step_called[optimizer_idx] += 1
optimizer.step(closure=optimizer_closure)
# update second optimizer every 2 steps
if optimizer_idx == 1:
if batch_idx % 2 == 0:
self.optimizer_step_called[optimizer_idx] += 1
optimizer.step(closure=optimizer_closure)
model = TestModel()
model.val_dataloader = None
trainer = pl.Trainer(
default_root_dir=tmpdir,
limit_train_batches=4,
max_epochs=1,
log_every_n_steps=1,
weights_summary=None,
)
trainer.fit(model)
assert model.training_step_called == [4, 2]
assert model.optimizer_step_called == [4, 2]