lightning/tests/test_gpu_models.py

408 lines
12 KiB
Python
Raw Normal View History

import os
import pytest
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import (
ModelCheckpoint,
)
from pytorch_lightning.root_module import memory
from pytorch_lightning.testing import (
LightningTestModel,
)
from pytorch_lightning.trainer.dp_mixin import (
parse_gpu_ids,
determine_root_gpu_device,
)
from pytorch_lightning.utilities.debugging import MisconfigurationException
from . import testing_utils
PRETEND_N_OF_GPUS = 16
def test_multi_gpu_model_ddp2():
"""
Make sure DDP2 works
:return:
"""
if not testing_utils.can_run_gpu_test():
return
testing_utils.reset_seed()
testing_utils.set_random_master_port()
model, hparams = testing_utils.get_model()
trainer_options = dict(
show_progress_bar=True,
max_nb_epochs=1,
train_percent_check=0.4,
val_percent_check=0.2,
gpus=2,
weights_summary=None,
distributed_backend='ddp2'
)
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
def test_multi_gpu_model_ddp():
"""
Make sure DDP works
:return:
"""
if not testing_utils.can_run_gpu_test():
return
testing_utils.reset_seed()
testing_utils.set_random_master_port()
model, hparams = testing_utils.get_model()
trainer_options = dict(
show_progress_bar=False,
max_nb_epochs=1,
train_percent_check=0.4,
val_percent_check=0.2,
gpus=[0, 1],
distributed_backend='ddp'
)
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
def test_optimizer_return_options():
testing_utils.reset_seed()
trainer = Trainer()
model, hparams = testing_utils.get_model()
# single optimizer
opt_a = torch.optim.Adam(model.parameters(), lr=0.002)
opt_b = torch.optim.SGD(model.parameters(), lr=0.002)
optim, lr_sched = trainer.init_optimizers(opt_a)
assert len(optim) == 1 and len(lr_sched) == 0
# opt tuple
opts = (opt_a, opt_b)
optim, lr_sched = trainer.init_optimizers(opts)
assert len(optim) == 2 and optim[0] == opts[0] and optim[1] == opts[1]
assert len(lr_sched) == 0
# opt list
opts = [opt_a, opt_b]
optim, lr_sched = trainer.init_optimizers(opts)
assert len(optim) == 2 and optim[0] == opts[0] and optim[1] == opts[1]
assert len(lr_sched) == 0
# opt tuple of lists
opts = ([opt_a], ['lr_scheduler'])
optim, lr_sched = trainer.init_optimizers(opts)
assert len(optim) == 1 and len(lr_sched) == 1
assert optim[0] == opts[0][0] and lr_sched[0] == 'lr_scheduler'
def test_cpu_slurm_save_load():
"""
Verify model save/load/checkpoint on CPU
:return:
"""
testing_utils.reset_seed()
hparams = testing_utils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
# logger file to get meta
logger = testing_utils.get_test_tube_logger(False)
version = logger.version
trainer_options = dict(
max_nb_epochs=1,
logger=logger,
checkpoint_callback=ModelCheckpoint(save_dir)
)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
real_global_step = trainer.global_step
# traning complete
assert result == 1, 'amp + ddp model failed to complete'
# predict with trained model before saving
# make a prediction
for dataloader in model.test_dataloader():
for batch in dataloader:
break
x, y = batch
x = x.view(x.size(0), -1)
model.eval()
pred_before_saving = model(x)
# test HPC saving
# simulate snapshot on slurm
saved_filepath = trainer.hpc_save(save_dir, logger)
assert os.path.exists(saved_filepath)
# new logger file to get meta
logger = testing_utils.get_test_tube_logger(False, version=version)
trainer_options = dict(
max_nb_epochs=1,
logger=logger,
checkpoint_callback=ModelCheckpoint(save_dir),
)
trainer = Trainer(**trainer_options)
model = LightningTestModel(hparams)
# set the epoch start hook so we can predict before the model does the full training
def assert_pred_same():
assert trainer.global_step == real_global_step and trainer.global_step > 0
# predict with loaded model to make sure answers are the same
trainer.model.eval()
new_pred = trainer.model(x)
assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1
model.on_epoch_start = assert_pred_same
# by calling fit again, we trigger training, loading weights from the cluster
# and our hook to predict using current model before any more weight updates
trainer.fit(model)
testing_utils.clear_save_dir()
def test_multi_gpu_none_backend():
"""
Make sure when using multiple GPUs the user can't use
distributed_backend = None
:return:
"""
testing_utils.reset_seed()
if not testing_utils.can_run_gpu_test():
return
model, hparams = testing_utils.get_model()
trainer_options = dict(
show_progress_bar=False,
max_nb_epochs=1,
train_percent_check=0.1,
val_percent_check=0.1,
gpus='-1'
)
with pytest.raises(MisconfigurationException):
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
def test_multi_gpu_model_dp():
"""
Make sure DP works
:return:
"""
testing_utils.reset_seed()
if not testing_utils.can_run_gpu_test():
return
model, hparams = testing_utils.get_model()
trainer_options = dict(
show_progress_bar=False,
distributed_backend='dp',
max_nb_epochs=1,
train_percent_check=0.1,
val_percent_check=0.1,
gpus='-1'
)
testing_utils.run_gpu_model_test(trainer_options, model, hparams)
# test memory helper functions
memory.get_memory_profile('min_max')
def test_ddp_sampler_error():
"""
Make sure DDP + AMP work
:return:
"""
if not testing_utils.can_run_gpu_test():
return
testing_utils.reset_seed()
testing_utils.set_random_master_port()
hparams = testing_utils.get_hparams()
model = LightningTestModel(hparams, force_remove_distributed_sampler=True)
logger = testing_utils.get_test_tube_logger(True)
trainer = Trainer(
logger=logger,
show_progress_bar=False,
max_nb_epochs=1,
gpus=[0, 1],
distributed_backend='ddp',
use_amp=True
)
with pytest.warns(UserWarning):
trainer.get_dataloaders(model)
testing_utils.clear_save_dir()
@pytest.fixture
def mocked_device_count(monkeypatch):
def device_count():
return PRETEND_N_OF_GPUS
monkeypatch.setattr(torch.cuda, 'device_count', device_count)
@pytest.fixture
def mocked_device_count_0(monkeypatch):
def device_count():
return 0
monkeypatch.setattr(torch.cuda, 'device_count', device_count)
test_num_gpus_data = [
pytest.param(None, 0, None, id="None - expect 0 gpu to use."),
pytest.param(0, 0, None, id="Oth gpu, expect 1 gpu to use."),
pytest.param(1, 1, None, id="1st gpu, expect 1 gpu to use."),
pytest.param(-1, PRETEND_N_OF_GPUS, "ddp", id="-1 - use all gpus"),
pytest.param('-1', PRETEND_N_OF_GPUS, "ddp", id="'-1' - use all gpus"),
pytest.param(3, 3, "ddp", id="3rd gpu - 1 gpu to use (backend:ddp)")
]
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize(["gpus", "expected_num_gpus", "distributed_backend"], test_num_gpus_data)
def test_trainer_gpu_parse(mocked_device_count, gpus, expected_num_gpus, distributed_backend):
assert Trainer(gpus=gpus, distributed_backend=distributed_backend).num_gpus == expected_num_gpus
test_num_gpus_data_0 = [
pytest.param(None, 0, None, id="None - expect 0 gpu to use."),
pytest.param(None, 0, "ddp", id="None - expect 0 gpu to use."),
]
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize(["gpus", "expected_num_gpus", "distributed_backend"], test_num_gpus_data_0)
def test_trainer_num_gpu_0(mocked_device_count_0, gpus, expected_num_gpus, distributed_backend):
assert Trainer(gpus=gpus, distributed_backend=distributed_backend).num_gpus == expected_num_gpus
test_root_gpu_data = [
pytest.param(None, None, "ddp", id="None is None"),
pytest.param(0, None, "ddp", id="O gpus, expect gpu root device to be None."),
pytest.param(1, 0, "ddp", id="1 gpu, expect gpu root device to be 0."),
pytest.param(-1, 0, "ddp", id="-1 - use all gpus, expect gpu root device to be 0."),
pytest.param('-1', 0, "ddp", id="'-1' - use all gpus, expect gpu root device to be 0."),
pytest.param(3, 0, "ddp", id="3 gpus, expect gpu root device to be 0.(backend:ddp)")]
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize(['gpus', 'expected_root_gpu', "distributed_backend"], test_root_gpu_data)
def test_root_gpu_property(mocked_device_count, gpus, expected_root_gpu, distributed_backend):
assert Trainer(gpus=gpus, distributed_backend=distributed_backend).root_gpu == expected_root_gpu
test_root_gpu_data_for_0_devices_passing = [
pytest.param(None, None, None, id="None is None"),
pytest.param(None, None, "ddp", id="None is None"),
pytest.param(0, None, "ddp", id="None is None"),
]
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize([
'gpus', 'expected_root_gpu', "distributed_backend"], test_root_gpu_data_for_0_devices_passing)
def test_root_gpu_property_0_passing(
mocked_device_count_0, gpus, expected_root_gpu, distributed_backend):
assert Trainer(gpus=gpus, distributed_backend=distributed_backend).root_gpu == expected_root_gpu
# Asking for a gpu when non are available will result in a MisconfigurationException
test_root_gpu_data_for_0_devices_raising = [
pytest.param(1, None, "ddp"),
pytest.param(3, None, "ddp"),
pytest.param(3, None, "ddp"),
pytest.param([1, 2], None, "ddp"),
pytest.param([0, 1], None, "ddp"),
pytest.param(-1, None, "ddp"),
pytest.param('-1', None, "ddp")
]
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize([
'gpus', 'expected_root_gpu', "distributed_backend"], test_root_gpu_data_for_0_devices_raising)
def test_root_gpu_property_0_raising(
mocked_device_count_0, gpus, expected_root_gpu, distributed_backend):
with pytest.raises(MisconfigurationException):
Trainer(gpus=gpus, distributed_backend=distributed_backend).root_gpu
test_determine_root_gpu_device_data = [
pytest.param(None, None, id="No gpus, expect gpu root device to be None"),
pytest.param([0], 0, id="Oth gpu, expect gpu root device to be 0."),
pytest.param([1], 1, id="1st gpu, expect gpu root device to be 1."),
pytest.param([3], 3, id="3rd gpu, expect gpu root device to be 3."),
pytest.param([1, 2], 1, id="[1, 2] gpus, expect gpu root device to be 1."),
]
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize(['gpus', 'expected_root_gpu'], test_determine_root_gpu_device_data)
def test_determine_root_gpu_device(gpus, expected_root_gpu):
assert determine_root_gpu_device(gpus) == expected_root_gpu
test_parse_gpu_ids_data = [
pytest.param(None, None),
pytest.param(0, None),
pytest.param(1, [0]),
pytest.param(-1, list(range(PRETEND_N_OF_GPUS)), id="-1 - use all gpus"),
pytest.param('-1', list(range(PRETEND_N_OF_GPUS)), id="'-1' - use all gpus"),
pytest.param(3, [0, 1, 2])]
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize(['gpus', 'expected_gpu_ids'], test_parse_gpu_ids_data)
def test_parse_gpu_ids(mocked_device_count, gpus, expected_gpu_ids):
assert parse_gpu_ids(gpus) == expected_gpu_ids
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize("gpus", [[1, 2, 19], -1, '-1'])
def test_parse_gpu_fail_on_non_existant_id(mocked_device_count_0, gpus):
with pytest.raises(MisconfigurationException):
parse_gpu_ids(gpus)
@pytest.mark.gpus_param_tests
def test_parse_gpu_fail_on_non_existant_id_2(mocked_device_count):
with pytest.raises(MisconfigurationException):
parse_gpu_ids([1, 2, 19])
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize("gpus", [-1, '-1'])
def test_parse_gpu_returns_None_when_no_devices_are_available(mocked_device_count_0, gpus):
with pytest.raises(MisconfigurationException):
parse_gpu_ids(gpus)
if __name__ == '__main__':
pytest.main([__file__])