import functools
import os
import numpy as np
from pytorch_lightning import seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger, TestTubeLogger
from tests import TEMP_PATH, RANDOM_PORTS
from tests.base.model_template import EvalModelTemplate
def assert_speed_parity_relative(pl_times, pt_times, max_diff: float = 0.1):
# assert speeds
diffs = np.asarray(pl_times) - np.asarray(pt_times)
# norm by vanila time
diffs = diffs / np.asarray(pt_times)
assert np.alltrue(diffs < max_diff), \
f"lightning {diffs} was slower than PT (threshold {max_diff})"
def assert_speed_parity_absolute(pl_times, pt_times, nb_epochs, max_diff: float = 0.6):
diffs = diffs / nb_epochs
def get_default_logger(save_dir, version=None):
# set up logger object without actually saving logs
logger = TensorBoardLogger(save_dir, name='lightning_logs', version=version)
return logger
def get_data_path(expt_logger, path_dir=None):
# some calls contain only experiment not complete logger
# each logger has to have these attributes
name, version = expt_logger.name, expt_logger.version
# only the test-tube experiment has such attribute
if isinstance(expt_logger, TestTubeLogger):
expt = expt_logger.experiment if hasattr(expt_logger, 'experiment') else expt_logger
return expt.get_data_path(name, version)
# the other experiments...
if not path_dir:
if hasattr(expt_logger, 'save_dir') and expt_logger.save_dir:
path_dir = expt_logger.save_dir
else:
path_dir = TEMP_PATH
path_expt = os.path.join(path_dir, name, 'version_%s' % version)
# try if the new sub-folder exists, typical case for test-tube
if not os.path.isdir(path_expt):
path_expt = path_dir
return path_expt
def load_model_from_checkpoint(logger, root_weights_dir, module_class=EvalModelTemplate):
trained_model = module_class.load_from_checkpoint(root_weights_dir)
assert trained_model is not None, 'loading model failed'
return trained_model
def assert_ok_model_acc(trainer, key='test_acc', thr=0.5):
# this model should get 0.80+ acc
acc = trainer.logger_connector.callback_metrics[key]
assert acc > thr, f"Model failed to get expected {thr} accuracy. {key} = {acc}"
def reset_seed(seed=0):
seed_everything(seed)
def set_random_master_port():
reset_seed()
port = RANDOM_PORTS.pop()
os.environ['MASTER_PORT'] = str(port)
def init_checkpoint_callback(logger):
checkpoint = ModelCheckpoint(logger.save_dir)
return checkpoint
def pl_multi_process_test(func):
"""Wrapper for running multi-processing tests."""
@functools.wraps(func)
def wrapper(*args, **kwargs):
from multiprocessing import Process, Queue
queue = Queue()
def inner_f(queue, **kwargs):
try:
func(**kwargs)
queue.put(1)
except Exception:
import traceback
traceback.print_exc()
queue.put(-1)
proc = Process(target=inner_f, args=(queue,), kwargs=kwargs)
proc.start()
proc.join()
result = queue.get()
assert result == 1, 'expected 1, but returned %s' % result
return wrapper