lightning/tests/base/datamodules.py

103 lines
3.6 KiB
Python
Raw Normal View History

import os
from typing import Any, Dict, Optional
from pytorch_lightning.core.datamodule import LightningDataModule
from tests.base.datasets import MNIST, TrialMNIST
from torch.utils.data import DataLoader, random_split
from torch.utils.data.distributed import DistributedSampler
class TrialMNISTDataModule(LightningDataModule):
def __init__(self, data_dir: str = "./"):
super().__init__()
self.data_dir = data_dir
self.non_picklable = None
self.checkpoint_state: Optional[str] = None
def prepare_data(self):
TrialMNIST(self.data_dir, train=True, download=True)
TrialMNIST(self.data_dir, train=False, download=True)
def setup(self, stage: Optional[str] = None):
if stage == "fit" or stage is None:
mnist_full = TrialMNIST(
root=self.data_dir, train=True, num_samples=64, download=True
)
self.mnist_train, self.mnist_val = random_split(mnist_full, [128, 64])
self.dims = self.mnist_train[0][0].shape
if stage == "test" or stage is None:
self.mnist_test = TrialMNIST(
root=self.data_dir, train=False, num_samples=64, download=True
)
self.dims = getattr(self, "dims", self.mnist_test[0][0].shape)
self.non_picklable = lambda x: x ** 2
def train_dataloader(self):
return DataLoader(self.mnist_train, batch_size=32)
def val_dataloader(self):
return DataLoader(self.mnist_val, batch_size=32)
def test_dataloader(self):
return DataLoader(self.mnist_test, batch_size=32)
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
checkpoint[self.__class__.__name__] = self.__class__.__name__
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
self.checkpoint_state = checkpoint.get(self.__class__.__name__)
class MNISTDataModule(LightningDataModule):
def __init__(
self, data_dir: str = "./", batch_size: int = 32, dist_sampler: bool = False
) -> None:
super().__init__()
self.dist_sampler = dist_sampler
self.data_dir = data_dir
self.batch_size = batch_size
# self.dims is returned when you call dm.size()
# Setting default dims here because we know them.
# Could optionally be assigned dynamically in dm.setup()
self.dims = (1, 28, 28)
def prepare_data(self):
# download only
MNIST(self.data_dir, train=True, download=True, normalize=(0.1307, 0.3081))
MNIST(self.data_dir, train=False, download=True, normalize=(0.1307, 0.3081))
def setup(self, stage: Optional[str] = None):
# Assign train/val datasets for use in dataloaders
# TODO: need to split using random_split once updated to torch >= 1.6
if stage == "fit" or stage is None:
self.mnist_train = MNIST(
self.data_dir, train=True, normalize=(0.1307, 0.3081)
)
# Assign test dataset for use in dataloader(s)
if stage == "test" or stage is None:
self.mnist_test = MNIST(
self.data_dir, train=False, normalize=(0.1307, 0.3081)
)
def train_dataloader(self):
dist_sampler = None
if self.dist_sampler:
dist_sampler = DistributedSampler(self.mnist_train, shuffle=False)
return DataLoader(
self.mnist_train,
batch_size=self.batch_size,
sampler=dist_sampler,
shuffle=False,
)
def test_dataloader(self):
return DataLoader(self.mnist_test, batch_size=self.batch_size, shuffle=False)