2020-10-01 16:34:12 +00:00
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import os
|
|
|
|
from tests.backends import ddp_model
|
|
|
|
from tests.utilities.dist import call_training_script
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('cli_args', [
|
|
|
|
pytest.param('--max_epochs 1 --gpus 2 --distributed_backend ddp'),
|
|
|
|
])
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
|
|
def test_multi_gpu_model_ddp_fit_only(tmpdir, cli_args):
|
|
|
|
# call the script
|
|
|
|
std, err = call_training_script(ddp_model, cli_args, 'fit', tmpdir, timeout=120)
|
|
|
|
|
|
|
|
# load the results of the script
|
|
|
|
result_path = os.path.join(tmpdir, 'ddp.result')
|
|
|
|
result = torch.load(result_path)
|
|
|
|
|
|
|
|
# verify the file wrote the expected outputs
|
|
|
|
assert result['status'] == 'complete'
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('cli_args', [
|
|
|
|
pytest.param('--max_epochs 1 --gpus 2 --distributed_backend ddp'),
|
|
|
|
])
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
|
|
def test_multi_gpu_model_ddp_test_only(tmpdir, cli_args):
|
|
|
|
# call the script
|
|
|
|
call_training_script(ddp_model, cli_args, 'test', tmpdir)
|
|
|
|
|
|
|
|
# load the results of the script
|
|
|
|
result_path = os.path.join(tmpdir, 'ddp.result')
|
|
|
|
result = torch.load(result_path)
|
|
|
|
|
|
|
|
# verify the file wrote the expected outputs
|
|
|
|
assert result['status'] == 'complete'
|
|
|
|
|
|
|
|
|
2020-10-03 18:05:31 +00:00
|
|
|
@pytest.mark.parametrize('cli_args', [
|
|
|
|
pytest.param('--max_epochs 1 --gpus 2 --distributed_backend ddp'),
|
|
|
|
])
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
|
|
|
def test_multi_gpu_model_ddp_fit_test(tmpdir, cli_args):
|
|
|
|
# call the script
|
|
|
|
call_training_script(ddp_model, cli_args, 'fit_test', tmpdir, timeout=20)
|
|
|
|
|
|
|
|
# load the results of the script
|
|
|
|
result_path = os.path.join(tmpdir, 'ddp.result')
|
|
|
|
result = torch.load(result_path)
|
|
|
|
|
|
|
|
# verify the file wrote the expected outputs
|
|
|
|
assert result['status'] == 'complete'
|
|
|
|
|
|
|
|
model_outs = result['result']
|
|
|
|
for out in model_outs:
|
|
|
|
assert out['test_acc'] > 0.90
|