lightning/tests/tests_pytorch/strategies/test_ddp_spawn.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

90 lines
3.0 KiB
Python
Raw Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2023-02-08 14:00:31 +00:00
import pytest
from torch.multiprocessing import ProcessRaisedException
import tests_pytorch.helpers.pipelines as tpipes
from lightning.pytorch.callbacks import EarlyStopping
from lightning.pytorch.demos.boring_classes import BoringModel
from lightning.pytorch.trainer import Trainer
from tests_pytorch.helpers.datamodules import ClassifDataModule
from tests_pytorch.helpers.runif import RunIf
from tests_pytorch.helpers.simple_models import ClassificationModel
2023-02-08 14:00:31 +00:00
from tests_pytorch.strategies.test_ddp_strategy import UnusedParametersModel
@RunIf(min_cuda_gpus=2, sklearn=True)
def test_multi_gpu_early_stop_ddp_spawn(tmpdir):
trainer_options = dict(
default_root_dir=tmpdir,
callbacks=[EarlyStopping(monitor="train_acc")],
max_epochs=50,
limit_train_batches=10,
limit_val_batches=10,
accelerator="gpu",
devices=[0, 1],
strategy="ddp_spawn",
)
dm = ClassifDataModule()
model = ClassificationModel()
tpipes.run_model_test(trainer_options, model, dm)
@RunIf(min_cuda_gpus=2)
def test_multi_gpu_model_ddp_spawn(tmpdir):
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=10,
limit_val_batches=10,
accelerator="gpu",
devices=[0, 1],
strategy="ddp_spawn",
enable_progress_bar=False,
)
model = BoringModel()
tpipes.run_model_test(trainer_options, model)
@RunIf(min_cuda_gpus=2)
def test_ddp_all_dataloaders_passed_to_fit(tmpdir):
"""Make sure DDP works with dataloaders passed to fit()"""
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
enable_progress_bar=False,
max_epochs=1,
limit_train_batches=0.2,
limit_val_batches=0.2,
accelerator="gpu",
devices=[0, 1],
strategy="ddp_spawn",
)
trainer.fit(model, train_dataloaders=model.train_dataloader(), val_dataloaders=model.val_dataloader())
assert trainer.state.finished, "DDP doesn't work with dataloaders passed to fit()."
2023-02-08 14:00:31 +00:00
def test_ddp_spawn_find_unused_parameters_exception():
"""Test that the DDP strategy can change PyTorch's error message so that it's more useful for Lightning
users."""
trainer = Trainer(accelerator="cpu", devices=1, strategy="ddp_spawn", max_steps=2)
with pytest.raises(
ProcessRaisedException, match="It looks like your LightningModule has parameters that were not used in"
):
trainer.fit(UnusedParametersModel())