2019-10-22 01:16:51 +00:00
|
|
|
import torch
|
2019-10-22 08:32:40 +00:00
|
|
|
|
2019-10-22 01:16:51 +00:00
|
|
|
from pytorch_lightning.root_module import memory
|
|
|
|
|
|
|
|
|
|
|
|
class TrainerLoggingMixin(object):
|
|
|
|
|
|
|
|
def log_metrics(self, metrics, grad_norm_dic):
|
|
|
|
"""
|
|
|
|
Logs the metric dict passed in
|
|
|
|
:param metrics:
|
|
|
|
:param grad_norm_dic:
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
# added metrics by Lightning for convenience
|
|
|
|
metrics['epoch'] = self.current_epoch
|
|
|
|
|
|
|
|
# add gpu memory
|
|
|
|
if self.on_gpu and self.log_gpu_memory:
|
|
|
|
mem_map = memory.get_memory_profile(self.log_gpu_memory)
|
|
|
|
metrics.update(mem_map)
|
|
|
|
|
|
|
|
# add norms
|
|
|
|
metrics.update(grad_norm_dic)
|
|
|
|
|
|
|
|
# turn all tensors to scalars
|
|
|
|
scalar_metrics = self.metrics_to_scalars(metrics)
|
|
|
|
|
|
|
|
# log actual metrics
|
|
|
|
if self.proc_rank == 0 and self.logger is not None:
|
|
|
|
self.logger.log_metrics(scalar_metrics, step_num=self.global_step)
|
|
|
|
self.logger.save()
|
|
|
|
|
|
|
|
def add_tqdm_metrics(self, metrics):
|
|
|
|
for k, v in metrics.items():
|
|
|
|
if type(v) is torch.Tensor:
|
|
|
|
v = v.item()
|
|
|
|
|
|
|
|
self.tqdm_metrics[k] = v
|
|
|
|
|
|
|
|
def metrics_to_scalars(self, metrics):
|
|
|
|
new_metrics = {}
|
|
|
|
for k, v in metrics.items():
|
|
|
|
if isinstance(v, torch.Tensor):
|
|
|
|
v = v.item()
|
|
|
|
|
|
|
|
if type(v) is dict:
|
|
|
|
v = self.metrics_to_scalars(v)
|
|
|
|
|
|
|
|
new_metrics[k] = v
|
|
|
|
|
|
|
|
return new_metrics
|
|
|
|
|
|
|
|
def process_output(self, output, train=False):
|
|
|
|
"""
|
|
|
|
Reduces output according to the training mode.
|
|
|
|
Separates loss from logging and tqdm metrics
|
|
|
|
:param output:
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
# ---------------
|
|
|
|
# EXTRACT CALLBACK KEYS
|
|
|
|
# ---------------
|
|
|
|
# all keys not progress_bar or log are candidates for callbacks
|
|
|
|
callback_metrics = {}
|
|
|
|
for k, v in output.items():
|
|
|
|
if k not in ['progress_bar', 'log']:
|
|
|
|
callback_metrics[k] = v
|
|
|
|
|
|
|
|
if train and (self.use_dp or self.use_ddp2):
|
|
|
|
nb_gpus = self.num_gpus
|
|
|
|
callback_metrics = self.reduce_distributed_output(callback_metrics, nb_gpus)
|
|
|
|
|
|
|
|
for k, v in callback_metrics.items():
|
|
|
|
callback_metrics[k] = v.item()
|
|
|
|
|
|
|
|
# ---------------
|
|
|
|
# EXTRACT PROGRESS BAR KEYS
|
|
|
|
# ---------------
|
|
|
|
try:
|
|
|
|
progress_output = output['progress_bar']
|
|
|
|
|
|
|
|
# reduce progress metrics for tqdm when using dp
|
|
|
|
if train and (self.use_dp or self.use_ddp2):
|
|
|
|
nb_gpus = self.num_gpus
|
|
|
|
progress_output = self.reduce_distributed_output(progress_output, nb_gpus)
|
|
|
|
|
|
|
|
progress_bar_metrics = progress_output
|
|
|
|
except Exception:
|
|
|
|
progress_bar_metrics = {}
|
|
|
|
|
|
|
|
# ---------------
|
|
|
|
# EXTRACT LOGGING KEYS
|
|
|
|
# ---------------
|
|
|
|
# extract metrics to log to experiment
|
|
|
|
try:
|
|
|
|
log_output = output['log']
|
|
|
|
|
|
|
|
# reduce progress metrics for tqdm when using dp
|
|
|
|
if train and (self.use_dp or self.use_ddp2):
|
|
|
|
nb_gpus = self.num_gpus
|
|
|
|
log_output = self.reduce_distributed_output(log_output, nb_gpus)
|
|
|
|
|
|
|
|
log_metrics = log_output
|
|
|
|
except Exception:
|
|
|
|
log_metrics = {}
|
|
|
|
|
|
|
|
# ---------------
|
|
|
|
# EXTRACT LOSS
|
|
|
|
# ---------------
|
|
|
|
# if output dict doesn't have the keyword loss
|
|
|
|
# then assume the output=loss if scalar
|
|
|
|
loss = None
|
|
|
|
if train:
|
|
|
|
try:
|
|
|
|
loss = output['loss']
|
|
|
|
except Exception:
|
|
|
|
if type(output) is torch.Tensor:
|
|
|
|
loss = output
|
|
|
|
else:
|
|
|
|
raise RuntimeError(
|
|
|
|
'No `loss` value in the dictionary returned from `model.training_step()`.'
|
|
|
|
)
|
|
|
|
|
|
|
|
# when using dp need to reduce the loss
|
|
|
|
if self.use_dp or self.use_ddp2:
|
|
|
|
loss = self.reduce_distributed_output(loss, self.num_gpus)
|
|
|
|
|
|
|
|
# use every metric passed in as a candidate for callback
|
|
|
|
callback_metrics.update(progress_bar_metrics)
|
|
|
|
callback_metrics.update(log_metrics)
|
|
|
|
|
|
|
|
# convert tensors to numpy
|
|
|
|
for k, v in callback_metrics.items():
|
|
|
|
if isinstance(v, torch.Tensor):
|
|
|
|
callback_metrics[k] = v.item()
|
|
|
|
|
|
|
|
return loss, progress_bar_metrics, log_metrics, callback_metrics
|
|
|
|
|
|
|
|
def reduce_distributed_output(self, output, nb_gpus):
|
|
|
|
if nb_gpus <= 1:
|
|
|
|
return output
|
|
|
|
|
|
|
|
# when using DP, we get one output per gpu
|
|
|
|
# average outputs and return
|
|
|
|
if type(output) is torch.Tensor:
|
|
|
|
return output.mean()
|
|
|
|
|
|
|
|
for k, v in output.items():
|
|
|
|
# recurse on nested dics
|
|
|
|
if isinstance(output[k], dict):
|
|
|
|
output[k] = self.reduce_distributed_output(output[k], nb_gpus)
|
|
|
|
|
|
|
|
# reduce only metrics that have the same nb of gpus
|
|
|
|
elif output[k].size(0) == nb_gpus:
|
|
|
|
reduced = torch.mean(output[k])
|
|
|
|
output[k] = reduced
|
|
|
|
return output
|