lightning/pytorch_lightning/loops/epoch/training_epoch_loop.py

423 lines
18 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Iterator, List, Optional, Union
import torch
import pytorch_lightning as pl
from pytorch_lightning import loops # import as loops to avoid circular imports
from pytorch_lightning.loops.batch import TrainingBatchLoop
from pytorch_lightning.trainer.connectors.logger_connector.result import ResultCollection
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.signature_utils import is_param_in_hook_signature
from pytorch_lightning.utilities.types import STEP_OUTPUT
from pytorch_lightning.utilities.warnings import WarningCache
class TrainingEpochLoop(loops.Loop):
""" Runs over all batches in a dataloader (one epoch). """
def __init__(self, min_steps: int, max_steps: int):
super().__init__()
self.min_steps: int = min_steps
self.max_steps: int = max_steps
self.global_step: int = 0
# the total batch index across all epochs
self.total_batch_idx: int = 0
# the current batch index in the loop that runs over the dataloader(s)
self.iteration_count: int = 0
# the current split index when the batch gets split into chunks in truncated backprop through time
self.split_idx: Optional[int] = None
# the number of batches seen this run, updates immediately after batch_loop.run()
self.batches_seen: int = 0
self.is_last_batch: Optional[bool] = None
self.batch_loop = TrainingBatchLoop()
self.val_loop = loops.EvaluationLoop()
self._results = ResultCollection(training=True)
self._dataloader_idx: Optional[int] = None
self._warning_cache: WarningCache = WarningCache()
self._epoch_output: Optional[List[List[STEP_OUTPUT]]] = None
@property
def batch_idx(self) -> int:
"""Returns the current batch index (within this epoch)"""
return self.iteration_count
@property
def done(self) -> bool:
"""Returns whether the training should be stopped.
The criteria are that the number of steps reached the max steps,
the last batch is reached or the trainer signals to stop (e.g. by early stopping).
"""
max_steps_reached = self.max_steps is not None and self.global_step >= self.max_steps
return max_steps_reached or self.trainer.should_stop or self._num_training_batches_reached(self.is_last_batch)
def connect(self, trainer: 'pl.Trainer', *args: Any, **kwargs: Any) -> None:
"""Connects the loop with all necessary parts like trainer and accelerators"""
Loop Refactor 5/N - Prediction Loop (#7700) * integrate d180bb2 * Minor changes * Refactor loop logic into logger connector * Refactor test * Tighter fx validator * Add back split idx * Typing * update * Conflict * Fix tests * resolve grad_norm * update * move to train loop * Bye grad_norm_dict parameter * Fix sync test * update * Fix bug when validation is run mid epoch * fix grad_norm_dict test * Fix fx_validator test * fix grad_norm_dict test * Fix order bug * Detach tensors in test * resolve some tests * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * remove pdb * resolve flake8 * Update test * more tests * Revert last thomas' changes * resolve 1 test * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Refactor context restoration * integrate latest changes from logger connector refactor poc * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * integrate latest changes from logger connector refactor poc * Minor changes * update changelog * Remove unused argument * Update CHANGELOG * Copy call_hook changes * Docs * Fix ref * move to cpu * Bad merge * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * remove pdb * remove pdb * Refactor to * Avoid partial * trigger ci * Bad merge * integrate latest logger connector changes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * remove grad norm dicts list * Diff * properties first * Bad merge * Reuse metrics_to_scalars * Use active loop * Move to device * resolve test * integrate latest changes from logger connector poc * define union * define union * Update logger connector * Update result * Update imports * Update after rename * Refactor reduce_fx and op * Fix test after rename * mypy * integrate latest logger connector refactor poc changes * Fix test * Refactor test * Deprecate `self.log(sync_dist_op)` in favor of `self.log(reduce_fx)` * Undo field * add redundant return * rename rename files and classes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * rename * Replace code * Fix names and imports * Remove metric_attribute * imports * loop hygiene * yapf on loops * protected new loop trigger * rename NEW LOOP guard * integrate latest logger connector changes * integrate latest logger connector changes (eval loop) * resolve todo dataloading reset * re-add notebooks * add missing init * bad merge * remove NEW_LOOP guard * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * flake8 * exclude coverage coverage * integrate #7917, remove teardown from training loop * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update "accumulated_batches_reached" condition based on if iter count was updated or not * remove public loop properties * make skip backward protected again * typing base loop * typing fit loop * typing training_batch_loop * typing evaluation loop * typing prediction loop * typing training epoch loop * dataloader_loop * evaluation_dataloader_loop * prediction_dataloader_loop * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * integrate train loop changes from master * integrate eval loop changes from master * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix tpipes moving model to cpu and leaving it there. * don't reset fit loop don't reset fit loop * fix test iteration count <-> batch_idx reset * replace torch.Tensor -> Tensor * fix attribute error to block_ddp_sync_behaviour * fix flake8 and yapf conflict * remove redundant override * add classes Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> Co-authored-by: Justus Schock <justus.schock@posteo.de> Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * trainer changes * connect * clean up * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update test renaming * rename evaluation loop to evaluation epoch loop * minor docstring improvements * update chlog * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * try ci fix * update code owners for pl/loops * update mock path * re-order * simplify dataloader reset * simplify get_dataloaders() * save predictions on_run_end() * improve skip condition re-routing * re-order * remove unused type import * check which assert is failing * pig * hobbit * teardown for evaluation * Revert "hobbit" This reverts commit e81b0dbee31da813ba6ad58f74d236863c86d18e. * Revert "pig" This reverts commit 33d89e0720ce7380af80917b15a79362d9416ae7. * Revert "check which assert is failing" This reverts commit b7483b425cab95290eb2cbf354ccb0a77004df83. * free memory in fit loop teardown * update docstring * period * remove dead code * else carlos Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/loops/dataloader/evaluation_dataloader_loop.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * update chlog * unused imp * move default construction in run_evaluation * add something for lawyer to read * switch typehint for eval loop trainer property * add missing imports * remove a todo that needs more discussion * combine _get_num_dataloaders with the property * Update pytorch_lightning/loops/dataloader/dataloader_loop.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * black + yapf * avoid coverage on old unused eval loop * empty space in docstring Co-authored-by: Ethan Harris <ewah1g13@soton.ac.uk> * resolve todo for args forwarding * weekproxy trainer * fix check for num dataloaders kwargs * clean up num prediction dataloaders property * free memory * rm notebooks folder * rm old file * revert changes to old eval loop * bad merge * undo teardown * setup signature * remove file for notes * free memory * chlog * Revert "weekproxy trainer" This reverts commit d4e6969170b80db4c9e6111fa9af507c740cde4a. * connect trainer * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * clean up max batches and dataloaders * max batches handling * no grad handling * unused argument * protected attrs * unused imports * undo unintentional rename * consistent naming * capitalization in docstring * list all args * Update pytorch_lightning/loops/prediction_epoch_loop.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/loops/prediction_epoch_loop.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/loops/dataloader/prediction_dataloader_loop.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/loops/dataloader/prediction_dataloader_loop.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/loops/prediction_epoch_loop.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Carlos Mocholi <carlossmocholi@gmail.com> Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Justus Schock <justus.schock@posteo.de> Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> Co-authored-by: Ethan Harris <ewah1g13@soton.ac.uk>
2021-06-23 09:17:04 +00:00
super().connect(trainer, *args, **kwargs)
self.batch_loop.connect(trainer)
self.val_loop.connect(trainer)
def reset(self) -> None:
"""Resets the internal state of the loop for a new run"""
self.iteration_count = 0
self.batches_seen = 0
self.is_last_batch = False
self._dataloader_idx = 0
# track epoch output
self._epoch_output = [[] for _ in range(self.batch_loop.num_active_optimizers(self.total_batch_idx))]
def on_run_start(self, *args: Any, **kwargs: Any) -> None:
# hook
self.trainer.logger_connector.on_epoch_start()
self.trainer.call_hook("on_epoch_start")
self.trainer.call_hook("on_train_epoch_start")
def advance(self, dataloader_iter: Iterator, **kwargs: Any) -> None:
"""Runs a single training batch.
Args:
dataloader_iter: the iterator over the dataloader producing the new batch
Raises:
StopIteration: When the epoch is canceled by the user returning -1
"""
_, (batch, is_last) = next(dataloader_iter)
self.is_last_batch = is_last
# ------------------------------------
# TRAINING_STEP + TRAINING_STEP_END
# ------------------------------------
with self.trainer.profiler.profile("run_training_batch"):
batch_output = self.batch_loop.run(batch, self.iteration_count, self._dataloader_idx)
self.batches_seen += 1
# when returning -1 from train_step, we end epoch early
if batch_output.signal == -1:
raise StopIteration
# update non-plateau LR schedulers
# update epoch-interval ones only when we are at the end of training epoch
self.update_lr_schedulers('step', update_plateau_schedulers=False)
if self._num_training_batches_reached(is_last):
self.update_lr_schedulers('epoch', update_plateau_schedulers=False)
batch_end_outputs = [opt_idx_out for opt_idx_out in batch_output.training_step_output if len(opt_idx_out)]
processed_batch_end_outputs = self._prepare_outputs(batch_end_outputs, batch_mode=True)
# hook
self.trainer.call_hook(
'on_train_batch_end', processed_batch_end_outputs, batch, self.iteration_count, self._dataloader_idx
)
self.trainer.call_hook('on_batch_end')
self.trainer.logger_connector.on_batch_end()
# figure out what to track for epoch end
self._track_epoch_end_reduce_metrics(self._epoch_output, batch_end_outputs)
# -----------------------------------------
# SAVE METRICS TO LOGGERS AND PROGRESS_BAR
# -----------------------------------------
self.trainer.logger_connector.update_train_step_metrics()
def on_advance_end(self):
"""Runs validation and Checkpointing if necessary.
Raises:
StopIteration: if :attr:`done` evaluates to ``True`` to finish this epoch
"""
# -----------------------------------------
# VALIDATE IF NEEDED + CHECKPOINT CALLBACK
# -----------------------------------------
should_check_val = self._should_check_val_fx(self.iteration_count, self.is_last_batch)
if should_check_val:
self.trainer.validating = True
self._run_validation()
self.trainer.training = True
# -----------------------------------------
# SAVE LOGGERS (ie: Tensorboard, etc...)
# -----------------------------------------
self._save_loggers_on_train_batch_end()
# update plateau LR scheduler after metrics are logged
self.update_lr_schedulers('step', update_plateau_schedulers=True)
self.trainer.checkpoint_connector.has_trained = True
self.total_batch_idx += 1
# progress global step according to grads progress
self._increment_accumulated_grad_global_step()
if self.done:
raise StopIteration
def on_run_end(self) -> List[List[STEP_OUTPUT]]:
"""Calls the on_epoch_end hook.
Returns:
The output of each training step for each optimizer
Raises:
MisconfigurationException: ``train_epoch_end`` does not return ``None``
"""
if self.batches_seen == 0:
# dataloader/iterator did not produce a batch
return
# inform logger the batch loop has finished
self.trainer.logger_connector.epoch_end_reached()
# prepare epoch output
processed_outputs = self._prepare_outputs(self._epoch_output, batch_mode=False)
# get the model and call model.training_epoch_end
model = self.trainer.lightning_module
if is_overridden('training_epoch_end', model):
# run training_epoch_end
# refresh the result for custom logging at the epoch level
model._current_fx_name = 'training_epoch_end'
# lightningmodule hook
training_epoch_end_output = model.training_epoch_end(processed_outputs)
if training_epoch_end_output is not None:
raise MisconfigurationException(
'training_epoch_end expects a return of None. '
'HINT: remove the return statement in training_epoch_end'
)
# call train epoch end hooks
self._on_train_epoch_end_hook(processed_outputs)
self.trainer.call_hook('on_epoch_end')
self.trainer.logger_connector.on_epoch_end()
return self._epoch_output
def teardown(self) -> None:
"""Frees memory of tracked epoch outputs."""
self.epoch_output = None
def _run_validation(self):
# reload dataloaders
self.val_loop.reload_evaluation_dataloaders()
with torch.no_grad():
self.val_loop.run()
def _on_train_epoch_end_hook(self, processed_epoch_output: List[List[STEP_OUTPUT]]) -> None:
"""Runs ``on_train_epoch_end hook``."""
# We cannot rely on Trainer.call_hook because the signatures might be different across
# lightning module and callback
# As a result, we need to inspect if the module accepts `outputs` in `on_train_epoch_end`
# This implementation is copied from Trainer.call_hook
hook_name = "on_train_epoch_end"
prev_fx_name = self.trainer.lightning_module._current_fx_name
self.trainer.lightning_module._current_fx_name = hook_name
# always profile hooks
with self.trainer.profiler.profile(hook_name):
# first call trainer hook
if hasattr(self.trainer, hook_name):
trainer_hook = getattr(self.trainer, hook_name)
trainer_hook(processed_epoch_output)
# next call hook in lightningModule
model_ref = self.trainer.lightning_module
if is_overridden(hook_name, model_ref):
hook_fx = getattr(model_ref, hook_name)
if is_param_in_hook_signature(hook_fx, "outputs"):
self._warning_cache.deprecation(
"The signature of `ModelHooks.on_train_epoch_end` has changed in v1.3."
" `outputs` parameter has been deprecated."
" Support for the old signature will be removed in v1.5",
)
model_ref.on_train_epoch_end(processed_epoch_output)
else:
model_ref.on_train_epoch_end()
# call the accelerator hook
if hasattr(self.trainer.accelerator, hook_name):
accelerator_hook = getattr(self.trainer.accelerator, hook_name)
accelerator_hook()
# restore current_fx when nested context
self.trainer.lightning_module._current_fx_name = prev_fx_name
def _num_training_batches_reached(self, is_last_batch: bool = False) -> bool:
"""Checks if we are in the last batch or if there are more batches to follow."""
# TODO: Can we combine this with training_batch_loop's arg that does a similar check?
return self.batches_seen == self.trainer.num_training_batches or is_last_batch
def _track_epoch_end_reduce_metrics(
self, epoch_output: List[List[STEP_OUTPUT]], batch_end_outputs: STEP_OUTPUT
) -> None:
"""Adds the batch outputs to the epoch outputs and prepares reduction"""
hook_overridden = self._should_add_batch_output_to_epoch_output()
if not hook_overridden:
return
# track the outputs to reduce at the end of the epoch
for opt_idx, opt_outputs in enumerate(batch_end_outputs):
# with 1 step (no tbptt) don't use a sequence at epoch end
if (
isinstance(opt_outputs, list) and len(opt_outputs) == 1
and not isinstance(opt_outputs[0], ResultCollection)
):
opt_outputs = opt_outputs[0]
epoch_output[opt_idx].append(opt_outputs)
def _should_add_batch_output_to_epoch_output(self) -> bool:
"""
We add to the epoch outputs if
1. The model defines training_epoch_end OR
2. The model overrides on_train_epoch_end which has `outputs` in the signature
"""
# TODO: in v1.5 this only needs to check if training_epoch_end is overridden
lightning_module = self.trainer.lightning_module
if is_overridden("training_epoch_end", lightning_module):
return True
if is_overridden("on_train_epoch_end", lightning_module):
model_hook_fx = getattr(lightning_module, "on_train_epoch_end")
if is_param_in_hook_signature(model_hook_fx, "outputs"):
return True
return False
@staticmethod
def _prepare_outputs(
outputs: List[List[List['ResultCollection']]],
batch_mode: bool,
) -> Union[List[List[List[Dict]]], List[List[Dict]], List[Dict], Dict]:
"""
Extract required information from batch or epoch end results.
Args:
outputs: A 3-dimensional list of ``ResultCollection`` objects with dimensions:
``[optimizer outs][batch outs][tbptt steps]``.
batch_mode: If True, ignore the batch output dimension.
Returns:
The cleaned outputs with ``ResultCollection`` objects converted to dictionaries.
All list dimensions of size one will be collapsed.
"""
processed_outputs = []
for opt_outputs in outputs:
# handle an edge case where an optimizer output is the empty list
if len(opt_outputs) == 0:
continue
processed_batch_outputs = []
if batch_mode:
opt_outputs = [opt_outputs]
for batch_outputs in opt_outputs:
processed_tbptt_outputs = []
if isinstance(batch_outputs, ResultCollection):
batch_outputs = [batch_outputs]
for tbptt_output in batch_outputs:
out = tbptt_output.extra
if tbptt_output.minimize is not None:
out['loss'] = tbptt_output.minimize.detach()
processed_tbptt_outputs.append(out)
# if there was only one tbptt step then we can collapse that dimension
if len(processed_tbptt_outputs) == 1:
processed_tbptt_outputs = processed_tbptt_outputs[0]
processed_batch_outputs.append(processed_tbptt_outputs)
# batch_outputs should be just one dict (or a list of dicts if using tbptt) per optimizer
if batch_mode:
processed_batch_outputs = processed_batch_outputs[0]
processed_outputs.append(processed_batch_outputs)
# if there is only one optimiser then we collapse that dimension
if len(processed_outputs) == 1:
processed_outputs = processed_outputs[0]
return processed_outputs
def update_lr_schedulers(self, interval: str, update_plateau_schedulers: bool) -> None:
"""updates the lr schedulers based on the given interval"""
if interval == "step" and self.batch_loop.should_accumulate():
return
self.trainer.optimizer_connector.update_learning_rates(
interval=interval,
update_plateau_schedulers=update_plateau_schedulers,
opt_indices=[opt_idx for opt_idx, _ in self.batch_loop.get_active_optimizers(self.total_batch_idx)],
)
def _increment_accumulated_grad_global_step(self) -> None:
"""increments global step"""
num_accumulated_batches_reached = self.batch_loop._accumulated_batches_reached()
num_training_batches_reached = self._num_training_batches_reached()
# progress global step according to grads progress
if num_accumulated_batches_reached or num_training_batches_reached:
self.global_step = self.trainer.accelerator.update_global_step(
self.total_batch_idx, self.trainer.global_step
)
def _should_check_val_fx(self, batch_idx: int, is_last_batch: bool) -> bool:
""" Decide if we should run validation. """
if not self.trainer.enable_validation:
return False
is_val_check_epoch = (self.trainer.current_epoch + 1) % self.trainer.check_val_every_n_epoch == 0
if not is_val_check_epoch:
return False
# val_check_batch is inf for iterable datasets with no length defined
is_infinite_dataset = self.trainer.val_check_batch == float('inf')
if is_last_batch and is_infinite_dataset:
return True
if self.trainer.should_stop:
return True
# TODO(@awaelchli): let training/eval loop handle logic around limit_*_batches and val_check_batch
is_val_check_batch = is_last_batch
if isinstance(self.trainer.limit_train_batches, int) and is_infinite_dataset:
is_val_check_batch = (batch_idx + 1) % self.trainer.limit_train_batches == 0
elif self.trainer.val_check_batch != float('inf'):
is_val_check_batch = (batch_idx + 1) % self.trainer.val_check_batch == 0
return is_val_check_batch
def _save_loggers_on_train_batch_end(self) -> None:
"""Flushes loggers to disk"""
# when loggers should save to disk
should_flush_logs = self.trainer.logger_connector.should_flush_logs
if should_flush_logs and self.trainer.is_global_zero and self.trainer.logger is not None:
self.trainer.logger.save()
def state_dict(self) -> Dict:
return {"batch_loop": self.batch_loop.state_dict(), "val_loop": self.val_loop.state_dict()}
def load_state_dict(self, state_dict: Dict) -> None:
self.batch_loop.load_state_dict(state_dict["batch_loop"])
self.val_loop.load_state_dict(state_dict["val_loop"])