2020-10-21 22:05:59 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2021-02-17 10:55:40 +00:00
|
|
|
from typing import Any, Optional, Sequence, Tuple, Union
|
2020-10-21 22:05:59 +00:00
|
|
|
|
2021-01-18 12:10:53 +00:00
|
|
|
import torch
|
2021-03-16 14:55:31 +00:00
|
|
|
from torchmetrics import Metric
|
2021-01-18 12:10:53 +00:00
|
|
|
|
2021-02-17 10:55:40 +00:00
|
|
|
from pytorch_lightning import utilities
|
2021-01-18 12:10:53 +00:00
|
|
|
from pytorch_lightning.metrics.functional.psnr import _psnr_compute, _psnr_update
|
2020-10-21 22:05:59 +00:00
|
|
|
|
|
|
|
|
|
|
|
class PSNR(Metric):
|
2020-11-25 08:05:30 +00:00
|
|
|
r"""
|
|
|
|
Computes `peak signal-to-noise ratio <https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio>`_ (PSNR):
|
|
|
|
|
|
|
|
.. math:: \text{PSNR}(I, J) = 10 * \log_{10} \left(\frac{\max(I)^2}{\text{MSE}(I, J)}\right)
|
|
|
|
|
|
|
|
Where :math:`\text{MSE}` denotes the `mean-squared-error
|
|
|
|
<https://en.wikipedia.org/wiki/Mean_squared_error>`_ function.
|
2020-10-21 22:05:59 +00:00
|
|
|
|
|
|
|
Args:
|
2021-02-17 10:55:40 +00:00
|
|
|
data_range:
|
|
|
|
the range of the data. If None, it is determined from the data (max - min).
|
|
|
|
The ``data_range`` must be given when ``dim`` is not None.
|
2020-10-21 22:05:59 +00:00
|
|
|
base: a base of a logarithm to use (default: 10)
|
|
|
|
reduction: a method to reduce metric score over labels.
|
|
|
|
|
|
|
|
- ``'elementwise_mean'``: takes the mean (default)
|
|
|
|
- ``'sum'``: takes the sum
|
|
|
|
- ``'none'``: no reduction will be applied
|
|
|
|
|
2021-02-17 10:55:40 +00:00
|
|
|
dim:
|
|
|
|
Dimensions to reduce PSNR scores over, provided as either an integer or a list of integers. Default is
|
|
|
|
None meaning scores will be reduced across all dimensions and all batches.
|
2020-10-21 22:05:59 +00:00
|
|
|
compute_on_step:
|
|
|
|
Forward only calls ``update()`` and return None if this is set to False. default: True
|
|
|
|
dist_sync_on_step:
|
|
|
|
Synchronize metric state across processes at each ``forward()``
|
|
|
|
before returning the value at the step. default: False
|
|
|
|
process_group:
|
|
|
|
Specify the process group on which synchronization is called. default: None (which selects the entire world)
|
|
|
|
|
2021-02-28 14:52:26 +00:00
|
|
|
Raises:
|
|
|
|
ValueError:
|
|
|
|
If ``dim`` is not ``None`` and ``data_range`` is not given.
|
|
|
|
|
2020-10-21 22:05:59 +00:00
|
|
|
Example:
|
|
|
|
|
|
|
|
>>> from pytorch_lightning.metrics import PSNR
|
|
|
|
>>> psnr = PSNR()
|
|
|
|
>>> preds = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
|
|
|
|
>>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
|
|
|
|
>>> psnr(preds, target)
|
|
|
|
tensor(2.5527)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
data_range: Optional[float] = None,
|
|
|
|
base: float = 10.0,
|
|
|
|
reduction: str = 'elementwise_mean',
|
2021-02-17 10:55:40 +00:00
|
|
|
dim: Optional[Union[int, Tuple[int, ...]]] = None,
|
2020-10-21 22:05:59 +00:00
|
|
|
compute_on_step: bool = True,
|
|
|
|
dist_sync_on_step: bool = False,
|
|
|
|
process_group: Optional[Any] = None,
|
|
|
|
):
|
|
|
|
super().__init__(
|
|
|
|
compute_on_step=compute_on_step,
|
|
|
|
dist_sync_on_step=dist_sync_on_step,
|
|
|
|
process_group=process_group,
|
|
|
|
)
|
|
|
|
|
2021-02-17 10:55:40 +00:00
|
|
|
if dim is None and reduction != 'elementwise_mean':
|
|
|
|
utilities.rank_zero_warn(f'The `reduction={reduction}` will not have any effect when `dim` is None.')
|
|
|
|
|
|
|
|
if dim is None:
|
|
|
|
self.add_state("sum_squared_error", default=torch.tensor(0.0), dist_reduce_fx="sum")
|
|
|
|
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
|
|
|
|
else:
|
|
|
|
self.add_state("sum_squared_error", default=[])
|
|
|
|
self.add_state("total", default=[])
|
|
|
|
|
2020-10-21 22:05:59 +00:00
|
|
|
if data_range is None:
|
2021-02-17 10:55:40 +00:00
|
|
|
if dim is not None:
|
|
|
|
# Maybe we could use `torch.amax(target, dim=dim) - torch.amin(target, dim=dim)` in PyTorch 1.7 to
|
|
|
|
# calculate `data_range` in the future.
|
|
|
|
raise ValueError("The `data_range` must be given when `dim` is not None.")
|
|
|
|
|
2020-10-21 22:05:59 +00:00
|
|
|
self.data_range = None
|
|
|
|
self.add_state("min_target", default=torch.tensor(0.0), dist_reduce_fx=torch.min)
|
|
|
|
self.add_state("max_target", default=torch.tensor(0.0), dist_reduce_fx=torch.max)
|
|
|
|
else:
|
|
|
|
self.register_buffer("data_range", torch.tensor(float(data_range)))
|
|
|
|
self.base = base
|
|
|
|
self.reduction = reduction
|
2021-02-17 10:55:40 +00:00
|
|
|
self.dim = tuple(dim) if isinstance(dim, Sequence) else dim
|
2020-10-21 22:05:59 +00:00
|
|
|
|
|
|
|
def update(self, preds: torch.Tensor, target: torch.Tensor):
|
|
|
|
"""
|
|
|
|
Update state with predictions and targets.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
preds: Predictions from model
|
|
|
|
target: Ground truth values
|
|
|
|
"""
|
2021-02-17 10:55:40 +00:00
|
|
|
sum_squared_error, n_obs = _psnr_update(preds, target, dim=self.dim)
|
|
|
|
if self.dim is None:
|
|
|
|
if self.data_range is None:
|
|
|
|
# keep track of min and max target values
|
|
|
|
self.min_target = min(target.min(), self.min_target)
|
|
|
|
self.max_target = max(target.max(), self.max_target)
|
|
|
|
|
|
|
|
self.sum_squared_error += sum_squared_error
|
|
|
|
self.total += n_obs
|
|
|
|
else:
|
|
|
|
self.sum_squared_error.append(sum_squared_error)
|
|
|
|
self.total.append(n_obs)
|
2020-10-21 22:05:59 +00:00
|
|
|
|
|
|
|
def compute(self):
|
|
|
|
"""
|
|
|
|
Compute peak signal-to-noise ratio over state.
|
|
|
|
"""
|
|
|
|
if self.data_range is not None:
|
|
|
|
data_range = self.data_range
|
|
|
|
else:
|
|
|
|
data_range = self.max_target - self.min_target
|
2021-02-17 10:55:40 +00:00
|
|
|
|
|
|
|
if self.dim is None:
|
|
|
|
sum_squared_error = self.sum_squared_error
|
|
|
|
total = self.total
|
|
|
|
else:
|
|
|
|
sum_squared_error = torch.cat([values.flatten() for values in self.sum_squared_error])
|
|
|
|
total = torch.cat([values.flatten() for values in self.total])
|
|
|
|
return _psnr_compute(sum_squared_error, total, data_range, base=self.base, reduction=self.reduction)
|