lightning/tests/strategies/test_single_device_strategy.py

75 lines
2.7 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pickle
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.core.optimizer import LightningOptimizer
from pytorch_lightning.strategies import SingleDeviceStrategy
from tests.helpers.boring_model import BoringModel
from tests.helpers.runif import RunIf
def test_single_cpu():
"""Tests if device is set correctly for single CPU strategy."""
trainer = Trainer()
assert isinstance(trainer.strategy, SingleDeviceStrategy)
assert trainer.strategy.root_device == torch.device("cpu")
class BoringModelGPU(BoringModel):
def on_train_start(self) -> None:
# make sure that the model is on GPU when training
assert self.device == torch.device("cuda:0")
self.start_cuda_memory = torch.cuda.memory_allocated()
@RunIf(skip_windows=True, min_gpus=1)
def test_single_gpu():
"""Tests if device is set correctly when training and after teardown for single GPU strategy."""
trainer = Trainer(accelerator="gpu", devices=1, fast_dev_run=True)
# assert training strategy attributes for device setting
assert isinstance(trainer.strategy, SingleDeviceStrategy)
assert trainer.strategy.root_device == torch.device("cuda:0")
model = BoringModelGPU()
trainer.fit(model)
# assert after training, model is moved to CPU and memory is deallocated
assert model.device == torch.device("cpu")
cuda_memory = torch.cuda.memory_allocated()
assert cuda_memory < model.start_cuda_memory
class MockOptimizer:
...
def test_strategy_pickle():
strategy = SingleDeviceStrategy("cpu")
optimizer = MockOptimizer()
strategy.optimizers = [optimizer]
assert isinstance(strategy.optimizers[0], MockOptimizer)
assert isinstance(strategy._lightning_optimizers[0], LightningOptimizer)
state = pickle.dumps(strategy)
# dumping did not get rid of the lightning optimizers
assert isinstance(strategy._lightning_optimizers[0], LightningOptimizer)
strategy_reloaded = pickle.loads(state)
# loading restores the lightning optimizers
assert isinstance(strategy_reloaded._lightning_optimizers[0], LightningOptimizer)