lightning/tests/checkpointing/test_torch_saving.py

67 lines
2.2 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
from pytorch_lightning import Trainer
from tests.helpers import BoringModel
from tests.helpers.runif import RunIf
deprecate enable_pl_optimizer as it is not restored properly (#5244) * update * clean test * still in progress * udpdate test * update * update * resolve flake * add test for zero_grad * update * works without accumulated_grad * update * update * resolve amp * revert back to True * update * clean tests * cleaned out * typo * update test * git repare bug * remove print * udpate * Fix formatting/optimizer imports * Refactor the test for cleanliness * Add vanilla model to the test, better var names * Fixed var names, let's clean up these mock tests * repare test * update test * resolve flake8 * add manual_optimization * update tests * resolve flake8 * add random accumulate_grad_batches * improve test * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update * clean tests * correct bug * Apply suggestions from code review * format * adress comments * update on comments * wip * typo * depreceate enable_pl_optimizer * resolve latest bugs * update * resolve merge * add comment * Update pytorch_lightning/core/lightning.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/deprecated_api/test_remove_1-3.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/optimizer_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update restore * add a property * remove setstate as not needed anymore * update test * provide optimizer to on_before_zero_grad * update on comments * update on comments * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * mofidy import * update changelog * resolve flake8 * update * update * clean doc Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-62-109.ec2.internal> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> (cherry picked from commit f2e99d617f05ec65fded81ccc6d0d59807c47573)
2021-01-08 21:13:12 +00:00
def test_model_torch_save(tmpdir):
"""Test to ensure torch save does not fail for model and trainer."""
model = BoringModel()
num_epochs = 1
trainer = Trainer(default_root_dir=tmpdir, max_epochs=num_epochs)
temp_path = os.path.join(tmpdir, "temp.pt")
trainer.fit(model)
# Ensure these do not fail
torch.save(trainer.model, temp_path)
torch.save(trainer, temp_path)
optimizer clean up (#4658) * add LightningOptimizer * typo * add mock closure * typo * remove logic in optimizer_step * update * update * update * desactivate LightningOptimizer for hovorod * resolve flake * typo * check optimizer name * change name * added backward to LightningOptimizer * remove use_lightning_optimizer * move update * simplify init * resolve comments * resolve bug * update * update * resolve bugs * resolve flake8 * set state * work manual_optimizer_step * add doc * add enable_pl_optimizer * make optimizer_step * add make_optimizer_step * add examples * resolve test * add test_optimizer_return_options_enable_pl_optimizer * add enable_pl_optimizer=True * update * update tests * resolve bugs * update * set Trainer to False * update * resolve bugs * update * remove from doc * resolve bug * typo * update * set to True * simplification * typo * resolve horovod * unwrap horovod * remove Optimizer * resolve horovod * move logic to amp_backend * doesn't seem to be pickable * update * add again * resolve some bugs * cleanup * resolve bug with AMP * change __repr__ * round at -12 * udpate * update * update * remove from horovod * typo * add convert_to_lightning_optimizers in each accelerators * typo * forgot * forgot a convert_to_lightning_optimizers * update * update * update * increase coverage * update * resolve flake8 * update * remove useless code * resolve comments + add support for LightningOptimizer base class * resolve flake * check optimizer get wrapped back * resolve DDPSharded * reduce code * lightningoptimizer * Update pytorch_lightning/core/optimizer.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update pytorch_lightning/core/lightning.py * remove reference to step function * Apply suggestions from code review * update on comments * resolve * Update CHANGELOG.md * add back training_step in apex and native_amp * rename optimizer_step Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
2020-12-01 00:09:46 +00:00
trainer = torch.load(temp_path)
@RunIf(skip_windows=True, skip_49370=True)
def test_model_torch_save_ddp_cpu(tmpdir):
"""Test to ensure torch save does not fail for model and trainer using cpu ddp."""
model = BoringModel()
num_epochs = 1
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=num_epochs, strategy="ddp_spawn", accelerator="cpu", devices=2, logger=False
)
temp_path = os.path.join(tmpdir, "temp.pt")
trainer.fit(model)
# Ensure these do not fail
torch.save(trainer.model, temp_path)
torch.save(trainer, temp_path)
@RunIf(min_gpus=2)
def test_model_torch_save_ddp_cuda(tmpdir):
"""Test to ensure torch save does not fail for model and trainer using gpu ddp."""
model = BoringModel()
num_epochs = 1
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=num_epochs, strategy="ddp_spawn", accelerator="gpu", devices=2
)
temp_path = os.path.join(tmpdir, "temp.pt")
trainer.fit(model)
# Ensure these do not fail
torch.save(trainer.model, temp_path)
torch.save(trainer, temp_path)