lightning/pl_examples/domain_templates/imagenet.py

250 lines
8.8 KiB
Python
Raw Normal View History

"""
This example is largely adapted from https://github.com/pytorch/examples/blob/master/imagenet/main.py
Before you can run this example, you will need to download the ImageNet dataset manually from the
`official website <http://image-net.org/download>`_ and place it into a folder `path/to/imagenet`.
Train on ImageNet with default parameters:
.. code-block: bash
python imagenet.py --data-path /path/to/imagenet
or show all options you can change:
.. code-block: bash
python imagenet.py --help
"""
import os
from argparse import ArgumentParser, Namespace
import torch
import torch.nn.functional as F
import torch.nn.parallel
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms
import pytorch_lightning as pl
resolving documentation warnings (#833) * add more underline * fix LightningMudule import error * remove unneeded blank line * escape asterisk to fix inline emphasis warning * add PULL_REQUEST_TEMPLATE.md * add __init__.py and import imagenet_example * fix duplicate label * add noindex option to fix duplicate object warnings * remove unexpected indent * refer explicit LightningModule * fix minor bug * refer EarlyStopping explicitly * restore exclude patterns * change the way how to refer class * remove unused import * update badges & drop Travis/Appveyor (#826) * drop Travis * drop Appveyor * update badges * fix missing PyPI images & CI badges (#853) * docs - anchor links (#848) * docs - add links * add desc. * add Greeting action (#843) * add Greeting action * Update greetings.yml Co-authored-by: William Falcon <waf2107@columbia.edu> * add pep8speaks (#842) * advanced profiler describe + cleaned up tests (#837) * add py36 compatibility * add test case to capture previous bug * clean up tests * clean up tests * Update lightning_module_template.py * Update lightning.py * respond lint issues * break long line * break more lines * checkout conflicting files from master * shorten url * checkout from upstream/master * remove trailing whitespaces * remove unused import LightningModule * fix sphinx bot warnings * Apply suggestions from code review just to trigger CI * Update .github/workflows/greetings.yml Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com>
2020-02-27 21:07:51 +00:00
from pytorch_lightning.core import LightningModule
resolving documentation warnings (#833) * add more underline * fix LightningMudule import error * remove unneeded blank line * escape asterisk to fix inline emphasis warning * add PULL_REQUEST_TEMPLATE.md * add __init__.py and import imagenet_example * fix duplicate label * add noindex option to fix duplicate object warnings * remove unexpected indent * refer explicit LightningModule * fix minor bug * refer EarlyStopping explicitly * restore exclude patterns * change the way how to refer class * remove unused import * update badges & drop Travis/Appveyor (#826) * drop Travis * drop Appveyor * update badges * fix missing PyPI images & CI badges (#853) * docs - anchor links (#848) * docs - add links * add desc. * add Greeting action (#843) * add Greeting action * Update greetings.yml Co-authored-by: William Falcon <waf2107@columbia.edu> * add pep8speaks (#842) * advanced profiler describe + cleaned up tests (#837) * add py36 compatibility * add test case to capture previous bug * clean up tests * clean up tests * Update lightning_module_template.py * Update lightning.py * respond lint issues * break long line * break more lines * checkout conflicting files from master * shorten url * checkout from upstream/master * remove trailing whitespaces * remove unused import LightningModule * fix sphinx bot warnings * Apply suggestions from code review just to trigger CI * Update .github/workflows/greetings.yml Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com>
2020-02-27 21:07:51 +00:00
class ImageNetLightningModel(LightningModule):
# pull out resnet names from torchvision models
MODEL_NAMES = sorted(
name for name in models.__dict__
if name.islower() and not name.startswith("__") and callable(models.__dict__[name])
)
def __init__(
self,
arch: str,
pretrained: bool,
lr: float,
momentum: float,
weight_decay: int,
data_path: str,
batch_size: int,
workers: int,
**kwargs,
):
super().__init__()
self.save_hyperparameters()
replace Hparams by init args (#1896) * remove the need for hparams * remove the need for hparams * remove the need for hparams * remove the need for hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * finished moco * basic * testing * todo * recurse * hparams * persist * hparams * chlog * tests * tests * tests * tests * tests * tests * review * saving * tests * tests * tests * docs * finished moco * hparams * review * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * hparams * overwrite * transform * transform * transform * transform * cleaning * cleaning * tests * examples * examples * examples * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * chp key * tests * Apply suggestions from code review * class * updated docs * updated docs * updated docs * updated docs * save * wip * fix * flake8 Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
2020-05-24 22:59:08 +00:00
self.arch = arch
self.pretrained = pretrained
self.lr = lr
self.momentum = momentum
self.weight_decay = weight_decay
self.data_path = data_path
self.batch_size = batch_size
self.workers = workers
replace Hparams by init args (#1896) * remove the need for hparams * remove the need for hparams * remove the need for hparams * remove the need for hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * finished moco * basic * testing * todo * recurse * hparams * persist * hparams * chlog * tests * tests * tests * tests * tests * tests * review * saving * tests * tests * tests * docs * finished moco * hparams * review * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * hparams * overwrite * transform * transform * transform * transform * cleaning * cleaning * tests * examples * examples * examples * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * chp key * tests * Apply suggestions from code review * class * updated docs * updated docs * updated docs * updated docs * save * wip * fix * flake8 Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
2020-05-24 22:59:08 +00:00
self.model = models.__dict__[self.arch](pretrained=self.pretrained)
implement forward and update args (#709) (#724) * implement forward and update args (#709) Fixes the following issues as discussed in issue #709 1) Implement forward method wrapped. 2) Set default value for seed. "None" breaks tensorboard. 3) Update redundant hparams.data to new hparams.data_path. 4) Update 'use-16bit' to 'use_16bit' to maintain consistency. * Fix failing GPU tests (#722) * Fix distributed_backend=None test We now throw a warning instead of an exception. Update test to reflect this. * Fix test_tube logger close when debug=True * Clean docs (#725) * updated gitignore * updated gitignore * updated links in ninja file * updated docs * finished callbacks * finished callbacks * finished callbacks * fixed left menu * added callbacks to menu * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * updated gitignore * updated links in ninja file * updated docs * finished callbacks * finished callbacks * finished callbacks * fixed left menu * added callbacks to menu * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * finished rebase * making private members * making private members * making private members * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * set auto dp if no backend * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * fixed lightning import * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * finished lightning module * finished lightning module * finished lightning module * finished lightning module * added callbacks * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * set auto dp if no backend * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * flake 8 * flake 8 * fix docs path * updated gitignore * updated gitignore * updated links in ninja file * updated docs * finished callbacks * finished callbacks * finished callbacks * fixed left menu * added callbacks to menu * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * updated gitignore * updated docs * finished callbacks * finished callbacks * finished callbacks * fixed left menu * added callbacks to menu * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * finished rebase * making private members * making private members * making private members * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * set auto dp if no backend * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * fixed lightning import * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * finished lightning module * finished lightning module * finished lightning module * finished lightning module * added callbacks * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * flake 8 * flake 8 * fix docs path * flake 8 * Update theme_variables.jinja * implement forward and update args (#709) Fixes the following issues as discussed in issue #709 1) Implement forward method wrapped. 2) Set default value for seed. "None" breaks tensorboard. 3) Update redundant hparams.data to new hparams.data_path. 4) Update 'use-16bit' to 'use_16bit' to maintain consistency. * use self.forward for val step (#709) Co-authored-by: Nic Eggert <nic@eggert.io> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-01-21 21:35:42 +00:00
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
images, target = batch
output = self(images)
loss_train = F.cross_entropy(output, target)
acc1, acc5 = self.__accuracy(output, target, topk=(1, 5))
self.log('train_loss', loss_train, on_step=True, on_epoch=True, logger=True)
self.log('train_acc1', acc1, on_step=True, prog_bar=True, on_epoch=True, logger=True)
self.log('train_acc5', acc5, on_step=True, on_epoch=True, logger=True)
return loss_train
def validation_step(self, batch, batch_idx):
images, target = batch
output = self(images)
loss_val = F.cross_entropy(output, target)
acc1, acc5 = self.__accuracy(output, target, topk=(1, 5))
self.log('val_loss', loss_val, on_step=True, on_epoch=True)
self.log('val_acc1', acc1, on_step=True, prog_bar=True, on_epoch=True)
self.log('val_acc5', acc5, on_step=True, on_epoch=True)
@staticmethod
def __accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def configure_optimizers(self):
optimizer = optim.SGD(
self.parameters(),
replace Hparams by init args (#1896) * remove the need for hparams * remove the need for hparams * remove the need for hparams * remove the need for hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * finished moco * basic * testing * todo * recurse * hparams * persist * hparams * chlog * tests * tests * tests * tests * tests * tests * review * saving * tests * tests * tests * docs * finished moco * hparams * review * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * hparams * overwrite * transform * transform * transform * transform * cleaning * cleaning * tests * examples * examples * examples * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * chp key * tests * Apply suggestions from code review * class * updated docs * updated docs * updated docs * updated docs * save * wip * fix * flake8 Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
2020-05-24 22:59:08 +00:00
lr=self.lr,
momentum=self.momentum,
weight_decay=self.weight_decay
)
scheduler = lr_scheduler.LambdaLR(
optimizer,
lambda epoch: 0.1 ** (epoch // 30)
)
return [optimizer], [scheduler]
def train_dataloader(self):
2019-11-09 12:15:07 +00:00
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
)
replace Hparams by init args (#1896) * remove the need for hparams * remove the need for hparams * remove the need for hparams * remove the need for hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * finished moco * basic * testing * todo * recurse * hparams * persist * hparams * chlog * tests * tests * tests * tests * tests * tests * review * saving * tests * tests * tests * docs * finished moco * hparams * review * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * hparams * overwrite * transform * transform * transform * transform * cleaning * cleaning * tests * examples * examples * examples * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * chp key * tests * Apply suggestions from code review * class * updated docs * updated docs * updated docs * updated docs * save * wip * fix * flake8 Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
2020-05-24 22:59:08 +00:00
train_dir = os.path.join(self.data_path, 'train')
train_dataset = datasets.ImageFolder(
train_dir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
2019-11-09 12:15:07 +00:00
normalize,
]))
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
replace Hparams by init args (#1896) * remove the need for hparams * remove the need for hparams * remove the need for hparams * remove the need for hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * finished moco * basic * testing * todo * recurse * hparams * persist * hparams * chlog * tests * tests * tests * tests * tests * tests * review * saving * tests * tests * tests * docs * finished moco * hparams * review * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * hparams * overwrite * transform * transform * transform * transform * cleaning * cleaning * tests * examples * examples * examples * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * chp key * tests * Apply suggestions from code review * class * updated docs * updated docs * updated docs * updated docs * save * wip * fix * flake8 Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
2020-05-24 22:59:08 +00:00
batch_size=self.batch_size,
shuffle=True,
num_workers=self.workers,
)
return train_loader
def val_dataloader(self):
2019-11-09 12:15:07 +00:00
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
)
replace Hparams by init args (#1896) * remove the need for hparams * remove the need for hparams * remove the need for hparams * remove the need for hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * finished moco * basic * testing * todo * recurse * hparams * persist * hparams * chlog * tests * tests * tests * tests * tests * tests * review * saving * tests * tests * tests * docs * finished moco * hparams * review * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * hparams * overwrite * transform * transform * transform * transform * cleaning * cleaning * tests * examples * examples * examples * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * chp key * tests * Apply suggestions from code review * class * updated docs * updated docs * updated docs * updated docs * save * wip * fix * flake8 Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
2020-05-24 22:59:08 +00:00
val_dir = os.path.join(self.data_path, 'val')
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(val_dir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
2019-11-09 12:15:07 +00:00
normalize,
])),
replace Hparams by init args (#1896) * remove the need for hparams * remove the need for hparams * remove the need for hparams * remove the need for hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * finished moco * basic * testing * todo * recurse * hparams * persist * hparams * chlog * tests * tests * tests * tests * tests * tests * review * saving * tests * tests * tests * docs * finished moco * hparams * review * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * hparams * overwrite * transform * transform * transform * transform * cleaning * cleaning * tests * examples * examples * examples * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * chp key * tests * Apply suggestions from code review * class * updated docs * updated docs * updated docs * updated docs * save * wip * fix * flake8 Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
2020-05-24 22:59:08 +00:00
batch_size=self.batch_size,
shuffle=False,
num_workers=self.workers,
)
return val_loader
def test_dataloader(self):
return self.val_dataloader()
def test_step(self, *args, **kwargs):
return self.validation_step(*args, **kwargs)
def test_epoch_end(self, *args, **kwargs):
outputs = self.validation_epoch_end(*args, **kwargs)
def substitute_val_keys(out):
return {k.replace('val', 'test'): v for k, v in out.items()}
outputs = {
'test_loss': outputs['val_loss'],
'progress_bar': substitute_val_keys(outputs['progress_bar']),
'log': substitute_val_keys(outputs['log']),
}
return outputs
@staticmethod
def add_model_specific_args(parent_parser): # pragma: no-cover
parser = ArgumentParser(parents=[parent_parser])
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
choices=ImageNetLightningModel.MODEL_NAMES,
help=('model architecture: ' + ' | '.join(ImageNetLightningModel.MODEL_NAMES)
+ ' (default: resnet18)'))
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
return parser
def main(args: Namespace) -> None:
if args.seed is not None:
pl.seed_everything(args.seed)
if args.accelerator == 'ddp':
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / max(1, args.gpus))
args.workers = int(args.workers / max(1, args.gpus))
model = ImageNetLightningModel(**vars(args))
trainer = pl.Trainer.from_argparse_args(args)
if args.evaluate:
trainer.test(model)
else:
trainer.fit(model)
def run_cli():
parent_parser = ArgumentParser(add_help=False)
parent_parser = pl.Trainer.add_argparse_args(parent_parser)
parent_parser.add_argument('--data-path', metavar='DIR', type=str,
help='path to dataset')
parent_parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parent_parser.add_argument('--seed', type=int, default=42,
help='seed for initializing training.')
parser = ImageNetLightningModel.add_model_specific_args(parent_parser)
parser.set_defaults(
profiler=True,
deterministic=True,
max_epochs=90,
)
args = parser.parse_args()
main(args)
if __name__ == '__main__':
run_cli()