79 lines
2.7 KiB
Python
79 lines
2.7 KiB
Python
|
# Copyright The PyTorch Lightning team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
from unittest.mock import Mock
|
||
|
|
||
|
import pytest
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
|
||
|
from pytorch_lightning.utilities import grad_norm
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"norm_type,expected",
|
||
|
[
|
||
|
(
|
||
|
1,
|
||
|
{"grad_1.0_norm_param0": 1 + 2 + 3, "grad_1.0_norm_param1": 4 + 5, "grad_1.0_norm_total": 15},
|
||
|
),
|
||
|
(
|
||
|
2,
|
||
|
{
|
||
|
"grad_2.0_norm_param0": pow(1 + 4 + 9, 0.5),
|
||
|
"grad_2.0_norm_param1": pow(16 + 25, 0.5),
|
||
|
"grad_2.0_norm_total": pow(1 + 4 + 9 + 16 + 25, 0.5),
|
||
|
},
|
||
|
),
|
||
|
(
|
||
|
3.14,
|
||
|
{
|
||
|
"grad_3.14_norm_param0": pow(1 + 2 ** 3.14 + 3 ** 3.14, 1 / 3.14),
|
||
|
"grad_3.14_norm_param1": pow(4 ** 3.14 + 5 ** 3.14, 1 / 3.14),
|
||
|
"grad_3.14_norm_total": pow(1 + 2 ** 3.14 + 3 ** 3.14 + 4 ** 3.14 + 5 ** 3.14, 1 / 3.14),
|
||
|
},
|
||
|
),
|
||
|
(
|
||
|
"inf",
|
||
|
{
|
||
|
"grad_inf_norm_param0": max(1, 2, 3),
|
||
|
"grad_inf_norm_param1": max(4, 5),
|
||
|
"grad_inf_norm_total": max(1, 2, 3, 4, 5),
|
||
|
},
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_grad_norm(norm_type, expected):
|
||
|
"""Test utility function for computing the p-norm of individual parameter groups and norm in total."""
|
||
|
|
||
|
class Model(nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
self.param0 = nn.Parameter(torch.rand(3))
|
||
|
self.param1 = nn.Parameter(torch.rand(2, 1))
|
||
|
self.param0.grad = torch.tensor([-1.0, 2.0, -3.0])
|
||
|
self.param1.grad = torch.tensor([[-4.0], [5.0]])
|
||
|
# param without grad should not contribute to norm
|
||
|
self.param2 = nn.Parameter(torch.rand(1))
|
||
|
|
||
|
model = Model()
|
||
|
norms = grad_norm(model, norm_type)
|
||
|
expected = {k: round(v, 4) for k, v in expected.items()}
|
||
|
assert norms == expected
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("norm_type", [-1, 0])
|
||
|
def test_grad_norm_invalid_norm_type(norm_type):
|
||
|
with pytest.raises(ValueError, match="`norm_type` must be a positive number or 'inf'"):
|
||
|
grad_norm(Mock(), norm_type)
|