2020-07-25 16:57:40 +00:00
|
|
|
from pytorch_lightning.core.lightning import LightningModule
|
|
|
|
from pytorch_lightning.utilities import rank_zero_warn
|
2020-08-07 22:33:51 +00:00
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
2020-07-25 16:57:40 +00:00
|
|
|
|
|
|
|
|
|
|
|
class ConfigValidator(object):
|
|
|
|
|
|
|
|
def __init__(self, trainer):
|
|
|
|
self.trainer = trainer
|
|
|
|
|
|
|
|
def enforce_datamodule_dataloader_override(self, train_dataloader, val_dataloaders, datamodule):
|
|
|
|
# If you supply a datamodule you can't supply train_dataloader or val_dataloaders
|
2020-08-13 21:06:17 +00:00
|
|
|
if (train_dataloader is not None or val_dataloaders is not None) and datamodule is not None:
|
2020-07-25 16:57:40 +00:00
|
|
|
raise MisconfigurationException(
|
|
|
|
'You cannot pass train_dataloader or val_dataloaders to trainer.fit if you supply a datamodule'
|
|
|
|
)
|
|
|
|
|
|
|
|
def verify_loop_configurations(self, model: LightningModule):
|
|
|
|
r"""
|
|
|
|
Checks that the model is configured correctly before training or testing is started.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model: The model to check the configuration.
|
|
|
|
|
|
|
|
"""
|
|
|
|
if not self.trainer.testing:
|
|
|
|
self.__verify_train_loop_configuration(model)
|
|
|
|
self.__verify_eval_loop_configuration(model, 'validation')
|
|
|
|
else:
|
|
|
|
# check test loop configuration
|
|
|
|
self.__verify_eval_loop_configuration(model, 'test')
|
|
|
|
|
|
|
|
def __verify_train_loop_configuration(self, model):
|
|
|
|
# -----------------------------------
|
|
|
|
# verify model has a training step
|
|
|
|
# -----------------------------------
|
|
|
|
has_training_step = self.trainer.is_overridden('training_step', model)
|
|
|
|
if not has_training_step:
|
|
|
|
raise MisconfigurationException(
|
|
|
|
'No `training_step()` method defined. Lightning `Trainer` expects as minimum a'
|
|
|
|
' `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined.'
|
|
|
|
)
|
|
|
|
|
|
|
|
# -----------------------------------
|
|
|
|
# verify model has a train dataloader
|
|
|
|
# -----------------------------------
|
|
|
|
has_train_dataloader = self.trainer.is_overridden('train_dataloader', model)
|
|
|
|
if not has_train_dataloader:
|
|
|
|
raise MisconfigurationException(
|
|
|
|
'No `train_dataloader()` method defined. Lightning `Trainer` expects as minimum a'
|
|
|
|
' `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined.'
|
|
|
|
)
|
|
|
|
|
|
|
|
# -----------------------------------
|
|
|
|
# verify model has optimizer
|
|
|
|
# -----------------------------------
|
|
|
|
has_optimizers = self.trainer.is_overridden('configure_optimizers', model)
|
|
|
|
if not has_optimizers:
|
|
|
|
raise MisconfigurationException(
|
|
|
|
'No `configure_optimizers()` method defined. Lightning `Trainer` expects as minimum a'
|
|
|
|
' `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined.'
|
|
|
|
)
|
|
|
|
|
|
|
|
def __verify_eval_loop_configuration(self, model, eval_loop_name):
|
|
|
|
step_name = f'{eval_loop_name}_step'
|
|
|
|
|
|
|
|
# map the dataloader name
|
|
|
|
loader_name = f'{eval_loop_name}_dataloader'
|
|
|
|
if eval_loop_name == 'validation':
|
|
|
|
loader_name = 'val_dataloader'
|
|
|
|
|
|
|
|
has_loader = self.trainer.is_overridden(loader_name, model)
|
|
|
|
has_step = self.trainer.is_overridden(step_name, model)
|
|
|
|
|
|
|
|
if has_loader and not has_step:
|
|
|
|
rank_zero_warn(
|
|
|
|
f'you passed in a {loader_name} but have no {step_name}. Skipping {eval_loop_name} loop'
|
|
|
|
)
|
|
|
|
if has_step and not has_loader:
|
|
|
|
rank_zero_warn(
|
|
|
|
f'you defined a {step_name} but have no {loader_name}. Skipping {eval_loop_name} loop'
|
|
|
|
)
|