lightning/tests/tests_pytorch/accelerators/test_tpu.py

326 lines
12 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import collections
import os
from copy import deepcopy
from unittest import mock
2022-02-17 23:38:39 +00:00
from unittest.mock import patch
import pytest
import torch
Add option for weight tying on TPU's (#5441) * added on_post_move_to_device * added tests * docs and refactors * Update tests/backends/test_tpu_backend.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/tpu.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/tpu.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/tpu.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/core/hooks.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * moved weight sharing module back to test updated tpu available * add count to warning * fix doctest * import trainer in doctest * import trainer in doctest * do not test code as no TPU device * param count to layer count * formatting * update docs * update import * update * resolve tests * remove legacy accelerator Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Your Name <you@example.com>
2021-02-18 00:03:26 +00:00
from torch import nn
from torch.utils.data import DataLoader
from pytorch_lightning import Trainer
from pytorch_lightning.accelerators.cpu import CPUAccelerator
from pytorch_lightning.accelerators.tpu import TPUAccelerator
from pytorch_lightning.demos.boring_classes import BoringModel, RandomDataset
2022-02-17 23:38:39 +00:00
from pytorch_lightning.plugins import PrecisionPlugin, TPUPrecisionPlugin, XLACheckpointIO
from pytorch_lightning.strategies import DDPStrategy, TPUSpawnStrategy
from pytorch_lightning.utilities import find_shared_parameters
from tests_pytorch.helpers.runif import RunIf
Add option for weight tying on TPU's (#5441) * added on_post_move_to_device * added tests * docs and refactors * Update tests/backends/test_tpu_backend.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/tpu.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/tpu.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/tpu.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/core/hooks.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * moved weight sharing module back to test updated tpu available * add count to warning * fix doctest * import trainer in doctest * import trainer in doctest * do not test code as no TPU device * param count to layer count * formatting * update docs * update import * update * resolve tests * remove legacy accelerator Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Your Name <you@example.com>
2021-02-18 00:03:26 +00:00
class WeightSharingModule(BoringModel):
def __init__(self):
super().__init__()
self.layer_1 = nn.Linear(32, 10, bias=False)
self.layer_2 = nn.Linear(10, 32, bias=False)
self.layer_3 = nn.Linear(32, 10, bias=False)
self.layer_3.weight = self.layer_1.weight
def forward(self, x):
x = self.layer_1(x)
x = self.layer_2(x)
x = self.layer_3(x)
return x
@RunIf(tpu=True, standalone=True)
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
def test_resume_training_on_cpu(tmpdir):
"""Checks if training can be resumed from a saved checkpoint on CPU."""
# Train a model on TPU
model = BoringModel()
trainer = Trainer(max_epochs=1, accelerator="tpu", devices=8)
trainer.fit(model)
model_path = trainer.checkpoint_callback.best_model_path
# Verify saved Tensors are on CPU
ckpt = torch.load(model_path)
weight_tensor = list(ckpt["state_dict"].values())[0]
assert weight_tensor.device == torch.device("cpu")
# Verify that training is resumed on CPU
trainer = Trainer(max_epochs=1, default_root_dir=tmpdir)
trainer.fit(model, ckpt_path=model_path)
@RunIf(tpu=True)
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
def test_if_test_works_after_train(tmpdir):
"""Ensure that .test() works after .fit()"""
model = BoringModel()
trainer = Trainer(max_epochs=1, accelerator="tpu", devices=8, default_root_dir=tmpdir, fast_dev_run=True)
trainer.fit(model)
out = trainer.test(model)
assert len(out) == 1
Add option for weight tying on TPU's (#5441) * added on_post_move_to_device * added tests * docs and refactors * Update tests/backends/test_tpu_backend.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/tpu.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/tpu.rst Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update docs/source/tpu.rst Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/core/decorators.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update pytorch_lightning/core/hooks.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * moved weight sharing module back to test updated tpu available * add count to warning * fix doctest * import trainer in doctest * import trainer in doctest * do not test code as no TPU device * param count to layer count * formatting * update docs * update import * update * resolve tests * remove legacy accelerator Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Your Name <you@example.com>
2021-02-18 00:03:26 +00:00
@RunIf(skip_windows=True)
def test_accelerator_cpu_with_tpu_cores_flag(tpu_available):
2022-02-22 13:02:13 +00:00
assert TPUAccelerator.is_available()
trainer = Trainer(accelerator="cpu", devices=8)
assert isinstance(trainer.accelerator, CPUAccelerator)
trainer = Trainer(accelerator="tpu", devices=8)
assert isinstance(trainer.accelerator, TPUAccelerator)
assert isinstance(trainer.strategy, TPUSpawnStrategy)
@RunIf(skip_windows=True)
2022-02-22 13:02:13 +00:00
@pytest.mark.parametrize(["accelerator", "devices"], [("auto", 8), ("auto", "auto"), ("tpu", None)])
def test_accelerator_tpu(accelerator, devices, tpu_available):
2022-02-22 13:02:13 +00:00
assert TPUAccelerator.is_available()
2022-02-22 13:02:13 +00:00
trainer = Trainer(accelerator=accelerator, devices=devices)
assert isinstance(trainer.accelerator, TPUAccelerator)
assert isinstance(trainer.strategy, TPUSpawnStrategy)
assert trainer.num_devices == 8
@RunIf(skip_windows=True)
def test_accelerator_tpu_with_tpu_cores_priority(tpu_available):
"""Test for checking `tpu_cores` flag takes priority over `devices`."""
tpu_cores = 8
with pytest.warns(UserWarning, match="The flag `devices=1` will be ignored,"):
trainer = Trainer(accelerator="tpu", devices=1, tpu_cores=tpu_cores)
assert isinstance(trainer.accelerator, TPUAccelerator)
assert trainer.num_devices == tpu_cores
@RunIf(skip_windows=True)
def test_set_devices_if_none_tpu(tpu_available):
with pytest.deprecated_call(match=r"is deprecated in v1.7 and will be removed in v2.0."):
trainer = Trainer(accelerator="tpu", tpu_cores=8)
assert isinstance(trainer.accelerator, TPUAccelerator)
assert trainer.num_devices == 8
@RunIf(tpu=True)
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
def test_manual_optimization_tpus(tmpdir):
class ManualOptimizationModel(BoringModel):
count = 0
called = collections.defaultdict(int)
def __init__(self):
super().__init__()
self.automatic_optimization = False
@property
def should_update(self):
return self.count % 2 == 0
def on_train_batch_start(self, batch, batch_idx):
self.called["on_train_batch_start"] += 1
self.weight_before = self.layer.weight.clone()
def training_step(self, batch, batch_idx):
self.called["training_step"] += 1
opt = self.optimizers()
output = self.layer(batch)
loss = self.loss(batch, output)
if self.should_update:
self.manual_backward(loss)
opt.step()
opt.zero_grad()
return loss
def on_train_batch_end(self, outputs, batch, batch_idx):
self.called["on_train_batch_end"] += 1
after_before = self.layer.weight.clone()
if self.should_update:
assert not torch.equal(self.weight_before, after_before), self.count
else:
assert torch.equal(self.weight_before, after_before)
assert torch.all(self.layer.weight.grad == 0)
self.count += 1
def on_train_start(self):
opt = self.optimizers()
self.opt_step_patch = patch.object(opt, "step", wraps=opt.step)
self.opt_step_mock = self.opt_step_patch.start()
def on_train_end(self):
assert self.called["training_step"] == 5
assert self.called["on_train_batch_start"] == 5
assert self.called["on_train_batch_end"] == 5
self.opt_step_patch.stop()
assert self.opt_step_mock.call_count == 3
model = ManualOptimizationModel()
model_copy = deepcopy(model)
model.training_step_end = None
model.training_epoch_end = None
trainer = Trainer(
max_epochs=1,
default_root_dir=tmpdir,
limit_train_batches=5,
limit_test_batches=0,
limit_val_batches=0,
accelerator="tpu",
devices=8,
)
trainer.fit(model)
for param, param_copy in zip(model.parameters(), model_copy.parameters()):
assert not torch.equal(param.cpu().data, param_copy.data)
def test_strategy_choice_tpu_str_ddp_spawn(tpu_available):
2022-02-17 23:38:39 +00:00
with pytest.raises(ValueError, match="TPUAccelerator` can only be used with a `SingleTPUStrategy`"):
Trainer(strategy="ddp_spawn", accelerator="tpu", devices=8)
@RunIf(skip_windows=True)
def test_strategy_choice_tpu_str_tpu_spawn_debug(tpu_available):
2022-02-17 23:38:39 +00:00
trainer = Trainer(strategy="tpu_spawn_debug", accelerator="tpu", devices=8)
assert isinstance(trainer.strategy, TPUSpawnStrategy)
@RunIf(tpu=True)
def test_strategy_choice_tpu_strategy():
trainer = Trainer(strategy=TPUSpawnStrategy(), accelerator="tpu", devices=8)
assert isinstance(trainer.strategy, TPUSpawnStrategy)
@RunIf(tpu=True)
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
def test_auto_parameters_tying_tpus(tmpdir):
model = WeightSharingModule()
shared_params = find_shared_parameters(model)
assert shared_params[0] == ["layer_1.weight", "layer_3.weight"]
trainer = Trainer(default_root_dir=tmpdir, limit_train_batches=5, accelerator="tpu", devices=8, max_epochs=1)
trainer.fit(model)
assert torch.all(torch.eq(model.layer_1.weight, model.layer_3.weight))
@RunIf(tpu=True)
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
def test_auto_parameters_tying_tpus_nested_module(tmpdir):
class SubModule(nn.Module):
def __init__(self, layer):
super().__init__()
self.layer = layer
def forward(self, x):
return self.layer(x)
class NestedModule(BoringModel):
def __init__(self):
super().__init__()
self.layer = nn.Linear(32, 10, bias=False)
self.net_a = SubModule(self.layer)
self.layer_2 = nn.Linear(10, 32, bias=False)
self.net_b = SubModule(self.layer)
def forward(self, x):
x = self.net_a(x)
x = self.layer_2(x)
x = self.net_b(x)
return x
model = NestedModule()
trainer = Trainer(default_root_dir=tmpdir, limit_train_batches=5, accelerator="tpu", devices=8, max_epochs=1)
trainer.fit(model)
assert torch.all(torch.eq(model.net_a.layer.weight, model.net_b.layer.weight))
def test_tpu_invalid_raises(tpu_available):
2022-02-17 23:38:39 +00:00
strategy = TPUSpawnStrategy(accelerator=TPUAccelerator(), precision_plugin=PrecisionPlugin())
with pytest.raises(ValueError, match="TPUAccelerator` can only be used with a `TPUPrecisionPlugin"):
Trainer(strategy=strategy, devices=8)
2022-02-17 23:38:39 +00:00
strategy = DDPStrategy(accelerator=TPUAccelerator(), precision_plugin=TPUPrecisionPlugin())
with pytest.raises(ValueError, match="TPUAccelerator` can only be used with a `SingleTPUStrategy`"):
Trainer(strategy=strategy, devices=8)
def test_tpu_invalid_raises_set_precision_with_strategy(tpu_available):
3/n Move accelerator into Strategy (#11022) * remove training_step() from accelerator * remove test, val, predict step * move * wip * accelerator references * cpu training * rename occurrences in tests * update tests * pull from adrian's commit * fix changelog merge pro * fix accelerator_connector and other updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix doc build and some mypy * fix lite * fix gpu setup environment * support customized ttp and accelerator * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix tpu error check * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix precision_plugin initialization to recognisze cusomized plugin * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update bug_report_model.py * Update accelerator_connector.py * update changelog * allow shorthand typing references to pl.Accelerator * rename helper method and add docstring * fix typing * Update pytorch_lightning/trainer/connectors/accelerator_connector.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update tests/accelerators/test_accelerator_connector.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update tests/accelerators/test_cpu.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix pre commit complaint * update typing to long ugly path * spacing in flow diagram * remove todo comments * docformatter * Update pytorch_lightning/plugins/training_type/training_type_plugin.py * revert test changes * improve custom plugin examples * remove redundant call to ttp attribute it is no longer a property * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Apply suggestions from code review Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
2021-12-16 04:41:34 +00:00
accelerator = TPUAccelerator()
2022-02-17 23:38:39 +00:00
strategy = TPUSpawnStrategy(accelerator=accelerator, precision_plugin=PrecisionPlugin())
with pytest.raises(ValueError, match="`TPUAccelerator` can only be used with a `TPUPrecisionPlugin`"):
Trainer(strategy=strategy, devices=8)
3/n Move accelerator into Strategy (#11022) * remove training_step() from accelerator * remove test, val, predict step * move * wip * accelerator references * cpu training * rename occurrences in tests * update tests * pull from adrian's commit * fix changelog merge pro * fix accelerator_connector and other updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix doc build and some mypy * fix lite * fix gpu setup environment * support customized ttp and accelerator * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix tpu error check * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix precision_plugin initialization to recognisze cusomized plugin * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update bug_report_model.py * Update accelerator_connector.py * update changelog * allow shorthand typing references to pl.Accelerator * rename helper method and add docstring * fix typing * Update pytorch_lightning/trainer/connectors/accelerator_connector.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update tests/accelerators/test_accelerator_connector.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update tests/accelerators/test_cpu.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix pre commit complaint * update typing to long ugly path * spacing in flow diagram * remove todo comments * docformatter * Update pytorch_lightning/plugins/training_type/training_type_plugin.py * revert test changes * improve custom plugin examples * remove redundant call to ttp attribute it is no longer a property * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Apply suggestions from code review Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
2021-12-16 04:41:34 +00:00
accelerator = TPUAccelerator()
2022-02-17 23:38:39 +00:00
strategy = DDPStrategy(accelerator=accelerator, precision_plugin=TPUPrecisionPlugin())
with pytest.raises(
ValueError, match="The `TPUAccelerator` can only be used with a `SingleTPUStrategy` or `TPUSpawnStrategy"
):
Trainer(strategy=strategy, devices=8)
@RunIf(skip_windows=True)
def test_xla_checkpoint_plugin_being_default(tpu_available):
trainer = Trainer(accelerator="tpu", devices=8)
assert isinstance(trainer.strategy.checkpoint_io, XLACheckpointIO)
@RunIf(tpu=True)
@patch("torch_xla.distributed.parallel_loader.MpDeviceLoader")
@patch("pytorch_lightning.strategies.tpu_spawn.TPUSpawnStrategy.root_device")
def test_mp_device_dataloader_attribute(root_device_mock, mp_loader_mock):
dataset = RandomDataset(32, 64)
dataloader = DataLoader(dataset)
processed_dataloader = TPUSpawnStrategy().process_dataloader(dataloader)
mp_loader_mock.assert_called_with(dataloader, root_device_mock)
assert processed_dataloader.dataset == processed_dataloader._loader.dataset
def test_warning_if_tpus_not_used(tpu_available):
with pytest.warns(UserWarning, match="TPU available but not used. Set `accelerator` and `devices`"):
Trainer()
@RunIf(tpu=True, standalone=True)
@pytest.mark.parametrize(
["devices", "expected_device_ids"],
[
(1, [0]),
(8, list(range(8))),
("8", list(range(8))),
([2], [2]),
("2,", [2]),
],
)
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
def test_trainer_config_device_ids(devices, expected_device_ids):
trainer = Trainer(accelerator="tpu", devices=devices)
assert trainer.device_ids == expected_device_ids
assert trainer.num_devices == len(expected_device_ids)