lightning/tests/tests_pytorch/trainer/flags/test_inference_mode.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

92 lines
2.9 KiB
Python
Raw Normal View History

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest import mock
from unittest.mock import Mock
import pytest
import torch
from lightning.fabric.utilities.imports import _TORCH_EQUAL_2_0
from lightning.pytorch import Trainer
from lightning.pytorch.demos.boring_classes import BoringModel
from lightning.pytorch.loops import _Loop
from lightning.pytorch.loops.utilities import _no_grad_context
@pytest.mark.parametrize("trainer_fn", ("validate", "test", "predict"))
def test_eval_inference_mode(tmp_path, trainer_fn):
class BoringModelNoGrad(BoringModel):
def assert_not_enabled(self):
assert not torch.is_grad_enabled()
assert not torch.is_inference_mode_enabled()
on_test_start = assert_not_enabled
on_validation_start = assert_not_enabled
on_predict_start = assert_not_enabled
class BoringModelForInferenceMode(BoringModel):
def assert_enabled(self):
assert not torch.is_grad_enabled()
assert torch.is_inference_mode_enabled()
on_test_start = assert_enabled
on_validation_start = assert_enabled
on_predict_start = assert_enabled
trainer = Trainer(default_root_dir=tmp_path, logger=False, inference_mode=False, fast_dev_run=True)
getattr(trainer, trainer_fn)(BoringModelNoGrad())
trainer = Trainer(logger=False, inference_mode=True, fast_dev_run=True)
getattr(trainer, trainer_fn)(BoringModelForInferenceMode())
def test_no_grad_context():
trainer = Mock()
class Foo:
@_no_grad_context
def run(self):
...
f = Foo()
with pytest.raises(TypeError, match="Foo` needs to be a Loop"):
f.run()
class Foo(_Loop):
@_no_grad_context
def run(self):
...
f = Foo(trainer)
with pytest.raises(TypeError, match="Foo.inference_mode` needs to be defined"):
f.run()
class Foo(_Loop):
def __init__(self):
super().__init__(trainer)
self.inference_mode = False
@_no_grad_context
def run(self):
...
f = Foo()
with mock.patch("torch.no_grad") as no_grad_mock:
f.run()
no_grad_mock.assert_called_once_with()
f.inference_mode = True
with mock.patch("torch.inference_mode") as inference_mode_mock:
f.run()
if not _TORCH_EQUAL_2_0:
inference_mode_mock.assert_called_once_with()