198 lines
4.4 KiB
Python
198 lines
4.4 KiB
Python
|
import pickle
|
||
|
import torch
|
||
|
import pytest
|
||
|
from pytorch_lightning import Trainer
|
||
|
from tests.base.datamodules import TrialMNISTDataModule
|
||
|
from tests.base import EvalModelTemplate
|
||
|
from argparse import ArgumentParser
|
||
|
|
||
|
|
||
|
def test_base_datamodule(tmpdir):
|
||
|
dm = TrialMNISTDataModule()
|
||
|
dm.prepare_data()
|
||
|
dm.setup()
|
||
|
|
||
|
|
||
|
def test_dm_add_argparse_args(tmpdir):
|
||
|
parser = ArgumentParser()
|
||
|
parser = TrialMNISTDataModule.add_argparse_args(parser)
|
||
|
args = parser.parse_args(['--data_dir', './my_data'])
|
||
|
assert args.data_dir == './my_data'
|
||
|
|
||
|
|
||
|
def test_dm_init_from_argparse_args(tmpdir):
|
||
|
parser = ArgumentParser()
|
||
|
parser = TrialMNISTDataModule.add_argparse_args(parser)
|
||
|
args = parser.parse_args(['--data_dir', './my_data'])
|
||
|
dm = TrialMNISTDataModule.from_argparse_args(args)
|
||
|
dm.prepare_data()
|
||
|
dm.setup()
|
||
|
|
||
|
|
||
|
def test_dm_pickle_after_init(tmpdir):
|
||
|
dm = TrialMNISTDataModule()
|
||
|
pickle.dumps(dm)
|
||
|
|
||
|
|
||
|
def test_dm_pickle_after_setup(tmpdir):
|
||
|
dm = TrialMNISTDataModule()
|
||
|
dm.prepare_data()
|
||
|
dm.setup()
|
||
|
pickle.dumps(dm)
|
||
|
|
||
|
|
||
|
def test_train_loop_only(tmpdir):
|
||
|
dm = TrialMNISTDataModule(tmpdir)
|
||
|
dm.prepare_data()
|
||
|
dm.setup()
|
||
|
|
||
|
model = EvalModelTemplate()
|
||
|
model.validation_step = None
|
||
|
model.validation_step_end = None
|
||
|
model.validation_epoch_end = None
|
||
|
model.test_step = None
|
||
|
model.test_step_end = None
|
||
|
model.test_epoch_end = None
|
||
|
|
||
|
trainer = Trainer(
|
||
|
default_root_dir=tmpdir,
|
||
|
max_epochs=3,
|
||
|
weights_summary=None,
|
||
|
)
|
||
|
trainer.fit(model, dm)
|
||
|
|
||
|
# fit model
|
||
|
result = trainer.fit(model)
|
||
|
assert result == 1
|
||
|
assert trainer.callback_metrics['loss'] < 0.50
|
||
|
|
||
|
|
||
|
def test_train_val_loop_only(tmpdir):
|
||
|
dm = TrialMNISTDataModule(tmpdir)
|
||
|
dm.prepare_data()
|
||
|
dm.setup()
|
||
|
|
||
|
model = EvalModelTemplate()
|
||
|
model.validation_step = None
|
||
|
model.validation_step_end = None
|
||
|
model.validation_epoch_end = None
|
||
|
|
||
|
trainer = Trainer(
|
||
|
default_root_dir=tmpdir,
|
||
|
max_epochs=3,
|
||
|
weights_summary=None,
|
||
|
)
|
||
|
trainer.fit(model, dm)
|
||
|
|
||
|
# fit model
|
||
|
result = trainer.fit(model)
|
||
|
assert result == 1
|
||
|
assert trainer.callback_metrics['loss'] < 0.50
|
||
|
|
||
|
|
||
|
def test_full_loop(tmpdir):
|
||
|
dm = TrialMNISTDataModule(tmpdir)
|
||
|
dm.prepare_data()
|
||
|
dm.setup()
|
||
|
|
||
|
model = EvalModelTemplate()
|
||
|
|
||
|
trainer = Trainer(
|
||
|
default_root_dir=tmpdir,
|
||
|
max_epochs=3,
|
||
|
weights_summary=None,
|
||
|
)
|
||
|
trainer.fit(model, dm)
|
||
|
|
||
|
# fit model
|
||
|
result = trainer.fit(model)
|
||
|
assert result == 1
|
||
|
|
||
|
# test
|
||
|
result = trainer.test(datamodule=dm)
|
||
|
result = result[0]
|
||
|
assert result['test_acc'] > 0.8
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(torch.cuda.device_count() < 1, reason="test requires multi-GPU machine")
|
||
|
def test_full_loop_single_gpu(tmpdir):
|
||
|
dm = TrialMNISTDataModule(tmpdir)
|
||
|
dm.prepare_data()
|
||
|
dm.setup()
|
||
|
|
||
|
model = EvalModelTemplate()
|
||
|
|
||
|
trainer = Trainer(
|
||
|
default_root_dir=tmpdir,
|
||
|
max_epochs=3,
|
||
|
weights_summary=None,
|
||
|
gpus=1
|
||
|
)
|
||
|
trainer.fit(model, dm)
|
||
|
|
||
|
# fit model
|
||
|
result = trainer.fit(model)
|
||
|
assert result == 1
|
||
|
|
||
|
# test
|
||
|
result = trainer.test(datamodule=dm)
|
||
|
result = result[0]
|
||
|
assert result['test_acc'] > 0.8
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
||
|
def test_full_loop_dp(tmpdir):
|
||
|
dm = TrialMNISTDataModule(tmpdir)
|
||
|
dm.prepare_data()
|
||
|
dm.setup()
|
||
|
|
||
|
model = EvalModelTemplate()
|
||
|
|
||
|
trainer = Trainer(
|
||
|
default_root_dir=tmpdir,
|
||
|
max_epochs=3,
|
||
|
weights_summary=None,
|
||
|
distributed_backend='dp',
|
||
|
gpus=2
|
||
|
)
|
||
|
trainer.fit(model, dm)
|
||
|
|
||
|
# fit model
|
||
|
result = trainer.fit(model)
|
||
|
assert result == 1
|
||
|
|
||
|
# test
|
||
|
result = trainer.test(datamodule=dm)
|
||
|
result = result[0]
|
||
|
assert result['test_acc'] > 0.8
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
||
|
def test_full_loop_ddp_spawn(tmpdir):
|
||
|
import os
|
||
|
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
|
||
|
|
||
|
dm = TrialMNISTDataModule(tmpdir)
|
||
|
dm.prepare_data()
|
||
|
dm.setup()
|
||
|
|
||
|
model = EvalModelTemplate()
|
||
|
|
||
|
trainer = Trainer(
|
||
|
default_root_dir=tmpdir,
|
||
|
max_epochs=3,
|
||
|
weights_summary=None,
|
||
|
distributed_backend='ddp_spawn',
|
||
|
gpus=[0, 1]
|
||
|
)
|
||
|
trainer.fit(model, dm)
|
||
|
|
||
|
# fit model
|
||
|
result = trainer.fit(model)
|
||
|
assert result == 1
|
||
|
|
||
|
# test
|
||
|
result = trainer.test(datamodule=dm)
|
||
|
result = result[0]
|
||
|
assert result['test_acc'] > 0.8
|