lightning/tests/tests_pytorch/strategies/test_ddp.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

190 lines
7.2 KiB
Python
Raw Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
2021-03-18 21:33:39 +00:00
from unittest import mock
import pytest
import torch
from torch.nn.parallel.distributed import DistributedDataParallel
import lightning.pytorch as pl
from lightning.fabric.plugins.environments import LightningEnvironment
from lightning.fabric.utilities.imports import _TORCH_GREATER_EQUAL_2_0
from lightning.pytorch import seed_everything, Trainer
from lightning.pytorch.callbacks import Callback
from lightning.pytorch.demos.boring_classes import BoringModel
from lightning.pytorch.plugins import DoublePrecisionPlugin, HalfPrecisionPlugin, PrecisionPlugin
from lightning.pytorch.strategies import DDPStrategy
from tests_pytorch.helpers.datamodules import ClassifDataModule
from tests_pytorch.helpers.runif import RunIf
from tests_pytorch.helpers.simple_models import ClassificationModel
@RunIf(min_cuda_gpus=2, standalone=True, sklearn=True)
def test_multi_gpu_model_ddp_fit_only(tmpdir):
dm = ClassifDataModule()
model = ClassificationModel()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp")
trainer.fit(model, datamodule=dm)
@RunIf(min_cuda_gpus=2, standalone=True, sklearn=True)
def test_multi_gpu_model_ddp_test_only(tmpdir):
dm = ClassifDataModule()
model = ClassificationModel()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp")
trainer.test(model, datamodule=dm)
@RunIf(min_cuda_gpus=2, standalone=True, sklearn=True)
def test_multi_gpu_model_ddp_fit_test(tmpdir):
seed_everything(4321)
dm = ClassifDataModule()
model = ClassificationModel()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp")
trainer.fit(model, datamodule=dm)
result = trainer.test(model, datamodule=dm)
for out in result:
assert out["test_acc"] > 0.7
2021-03-18 21:33:39 +00:00
@RunIf(skip_windows=True)
@mock.patch("torch.cuda.set_device")
@mock.patch("lightning.pytorch.accelerators.cuda._check_cuda_matmul_precision")
@mock.patch("lightning.pytorch.accelerators.cuda._clear_cuda_memory")
def test_ddp_torch_dist_is_available_in_setup(_, __, ___, cuda_count_1, mps_count_0, tmpdir):
"""Test to ensure torch distributed is available within the setup hook using ddp."""
2021-03-18 21:33:39 +00:00
class TestModel(BoringModel):
def setup(self, stage: str) -> None:
2021-03-18 21:33:39 +00:00
assert torch.distributed.is_initialized()
raise SystemExit()
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
strategy=DDPStrategy(process_group_backend="gloo"),
accelerator="gpu",
devices=1,
)
with pytest.raises(SystemExit):
trainer.fit(model)
@RunIf(min_cuda_gpus=2, standalone=True)
2023-05-05 06:25:15 +00:00
@pytest.mark.parametrize("precision", ["16-mixed", "32-true"])
def test_ddp_wrapper(tmpdir, precision):
"""Test parameters to ignore are carried over for DDP."""
class WeirdModule(torch.nn.Module):
def _save_to_state_dict(self, destination, prefix, keep_vars):
return {"something": "something"}
class CustomModel(BoringModel):
def __init__(self):
super().__init__()
self.weird_module = WeirdModule()
# should be skip.
self._ddp_params_and_buffers_to_ignore = ["something"]
class CustomCallback(Callback):
def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
assert isinstance(trainer.strategy.model, DistributedDataParallel)
expected = ["something"]
assert (
trainer.strategy.model.parameters_to_ignore == set(expected) if _TORCH_GREATER_EQUAL_2_0 else expected
)
assert trainer.strategy.model.module._ddp_params_and_buffers_to_ignore == expected
model = CustomModel()
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
precision=precision,
strategy="ddp",
accelerator="gpu",
devices=2,
callbacks=CustomCallback(),
enable_progress_bar=False,
enable_model_summary=False,
)
trainer.fit(model)
@pytest.mark.parametrize(
("process_group_backend", "device_str", "expected_process_group_backend"),
[
pytest.param("foo", "cpu", "foo"),
pytest.param("foo", "cuda:0", "foo"),
pytest.param(None, "cuda:0", "nccl"),
pytest.param(None, "cpu", "gloo"),
],
)
def test_ddp_process_group_backend(process_group_backend, device_str, expected_process_group_backend):
"""Test settings for process group backend."""
class MockDDPStrategy(DDPStrategy):
def __init__(self, root_device, process_group_backend):
self._root_device = root_device
super().__init__(process_group_backend=process_group_backend)
@property
def root_device(self):
return self._root_device
strategy = MockDDPStrategy(process_group_backend=process_group_backend, root_device=torch.device(device_str))
assert strategy._get_process_group_backend() == expected_process_group_backend
@pytest.mark.parametrize(
("strategy_name", "expected_ddp_kwargs"),
[
("ddp", {}),
("ddp_find_unused_parameters_false", {"find_unused_parameters": False}),
("ddp_find_unused_parameters_true", {"find_unused_parameters": True}),
],
)
def test_ddp_kwargs_from_registry(strategy_name, expected_ddp_kwargs, mps_count_0):
trainer = Trainer(strategy=strategy_name)
assert trainer.strategy._ddp_kwargs == expected_ddp_kwargs
@RunIf(min_cuda_gpus=2)
@pytest.mark.parametrize(
("precision_plugin", "expected_dtype"),
[
(PrecisionPlugin(), torch.float32),
(DoublePrecisionPlugin(), torch.float64),
(HalfPrecisionPlugin("16-true"), torch.float16),
pytest.param(HalfPrecisionPlugin("bf16-true"), torch.bfloat16, marks=RunIf(bf16_cuda=True)),
],
)
@mock.patch.dict(os.environ, {"LOCAL_RANK": "1"})
def test_tensor_init_context(precision_plugin, expected_dtype):
"""Test that the module under the init-context gets moved to the right device and dtype."""
parallel_devices = [torch.device("cuda", 0), torch.device("cuda", 1)]
expected_device = parallel_devices[1] if _TORCH_GREATER_EQUAL_2_0 else torch.device("cpu")
strategy = DDPStrategy(
parallel_devices=parallel_devices, precision_plugin=precision_plugin, cluster_environment=LightningEnvironment()
)
assert strategy.local_rank == 1
with strategy.tensor_init_context():
module = torch.nn.Linear(2, 2)
assert module.weight.device == module.bias.device == expected_device
assert module.weight.dtype == module.bias.dtype == expected_dtype