lightning/tests/callbacks/test_callback_hook_outputs.py

137 lines
3.8 KiB
Python
Raw Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
from pytorch_lightning import Callback, Trainer
from tests.helpers.boring_model import BoringModel
@pytest.mark.parametrize("single_cb", [False, True])
def test_train_step_no_return(tmpdir, single_cb: bool):
"""
Tests that only training_step can be used
"""
class CB(Callback):
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
d = outputs[0][0]
assert 'minimize' in d
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
assert 'x' in outputs
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
assert 'x' in outputs
def on_train_epoch_end(self, trainer, pl_module, outputs):
d = outputs[0]
assert len(d) == trainer.num_training_batches
class TestModel(BoringModel):
def on_train_batch_end(self, outputs, batch, batch_idx: int, dataloader_idx: int) -> None:
d = outputs[0][0]
assert 'minimize' in d
def on_validation_batch_end(self, outputs, batch, batch_idx: int, dataloader_idx: int) -> None:
assert 'x' in outputs
def on_test_batch_end(self, outputs, batch, batch_idx: int, dataloader_idx: int) -> None:
assert 'x' in outputs
def on_train_epoch_end(self, outputs) -> None:
d = outputs[0]
assert len(d) == self.trainer.num_training_batches
model = TestModel()
trainer = Trainer(
callbacks=CB() if single_cb else [CB()],
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
weights_summary=None,
)
assert any(isinstance(c, CB) for c in trainer.callbacks)
results = trainer.fit(model)
assert results
def test_on_val_epoch_end_outputs(tmpdir):
class CB(Callback):
def on_validation_epoch_end(self, trainer, pl_module, outputs):
if trainer.running_sanity_check:
assert len(outputs[0]) == trainer.num_sanity_val_batches[0]
else:
assert len(outputs[0]) == trainer.num_val_batches[0]
model = BoringModel()
trainer = Trainer(
callbacks=CB(),
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
weights_summary=None,
)
trainer.fit(model)
def test_on_test_epoch_end_outputs(tmpdir):
class CB(Callback):
def on_test_epoch_end(self, trainer, pl_module, outputs):
assert len(outputs[0]) == trainer.num_test_batches[0]
model = BoringModel()
trainer = Trainer(
callbacks=CB(),
default_root_dir=tmpdir,
weights_summary=None,
)
trainer.test(model)
def test_free_memory_on_eval_outputs(tmpdir):
class CB(Callback):
def on_epoch_end(self, trainer, pl_module):
assert len(trainer.evaluation_loop.outputs) == 0
model = BoringModel()
trainer = Trainer(
callbacks=CB(),
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
weights_summary=None,
)
trainer.fit(model)