lightning/pl_examples/domain_templates/gan.py

212 lines
6.5 KiB
Python
Raw Normal View History

2019-08-14 12:41:32 +00:00
"""
2019-10-18 22:26:31 +00:00
To run this template just do:
python gan.py
2019-08-14 12:41:32 +00:00
2019-10-18 22:26:31 +00:00
After a few epochs, launch tensorboard to see the images being generated at every batch.
2019-08-14 12:41:32 +00:00
tensorboard --logdir default
"""
from argparse import ArgumentParser
import os
import numpy as np
2019-10-14 10:56:33 +00:00
from collections import OrderedDict
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
import torch
import pytorch_lightning as pl
class Generator(nn.Module):
def __init__(self, latent_dim, img_shape):
super(Generator, self).__init__()
self.img_shape = img_shape
def block(in_feat, out_feat, normalize=True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat, 0.8))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.model = nn.Sequential(
*block(latent_dim, 128, normalize=False),
*block(128, 256),
*block(256, 512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh()
)
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), *self.img_shape)
return img
class Discriminator(nn.Module):
def __init__(self, img_shape):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
nn.Linear(int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
nn.Sigmoid(),
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)
return validity
class GAN(pl.LightningModule):
def __init__(self, hparams):
super(GAN, self).__init__()
self.hparams = hparams
# networks
mnist_shape = (1, 28, 28)
self.generator = Generator(latent_dim=hparams.latent_dim, img_shape=mnist_shape)
self.discriminator = Discriminator(img_shape=mnist_shape)
# cache for generated images
self.generated_imgs = None
2019-10-16 13:25:26 +00:00
self.last_imgs = None
def forward(self, z):
return self.generator(z)
def adversarial_loss(self, y_hat, y):
2019-10-18 22:26:50 +00:00
return F.binary_cross_entropy(y_hat, y)
def training_step(self, batch, batch_nb, optimizer_i):
imgs, _ = batch
2019-10-16 13:25:26 +00:00
self.last_imgs = imgs
# train generator
if optimizer_i == 0:
# sample noise
z = torch.randn(imgs.shape[0], self.hparams.latent_dim)
# match gpu device (or keep as cpu)
if self.on_gpu:
z = z.cuda(imgs.device.index)
# generate images
self.generated_imgs = self.forward(z)
# log sampled images
2019-10-14 10:56:33 +00:00
# sample_imgs = self.generated_imgs[:6]
# grid = torchvision.utils.make_grid(sample_imgs)
# self.logger.experiment.add_image('generated_images', grid, 0)
# ground truth result (ie: all fake)
valid = torch.ones(imgs.size(0), 1)
# adversarial loss is binary cross-entropy
g_loss = self.adversarial_loss(self.discriminator(self.generated_imgs), valid)
2019-10-14 10:56:33 +00:00
tqdm_dict = {'g_loss': g_loss}
output = OrderedDict({
'loss': g_loss,
'progress_bar': tqdm_dict,
'log': tqdm_dict
})
return output
# train discriminator
if optimizer_i == 1:
# Measure discriminator's ability to classify real from generated samples
# how well can it label as real?
valid = torch.ones(imgs.size(0), 1)
real_loss = self.adversarial_loss(self.discriminator(imgs), valid)
# how well can it label as fake?
fake = torch.zeros(imgs.size(0), 1)
fake_loss = self.adversarial_loss(
self.discriminator(self.generated_imgs.detach()), fake)
# discriminator loss is the average of these
d_loss = (real_loss + fake_loss) / 2
2019-10-14 10:56:33 +00:00
tqdm_dict = {'d_loss': d_loss}
output = OrderedDict({
'loss': d_loss,
'progress_bar': tqdm_dict,
'log': tqdm_dict
})
return output
def configure_optimizers(self):
lr = self.hparams.lr
b1 = self.hparams.b1
b2 = self.hparams.b2
opt_g = torch.optim.Adam(self.generator.parameters(), lr=lr, betas=(b1, b2))
opt_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr, betas=(b1, b2))
return [opt_g, opt_d], []
@pl.data_loader
def train_dataloader(self):
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
dataset = MNIST(os.getcwd(), train=True, download=True, transform=transform)
return DataLoader(dataset, batch_size=self.hparams.batch_size)
2019-10-14 10:56:33 +00:00
def on_epoch_end(self):
z = torch.randn(8, self.hparams.latent_dim)
# match gpu device (or keep as cpu)
if self.on_gpu:
2019-10-16 13:25:26 +00:00
z = z.cuda(self.last_imgs.device.index)
2019-10-14 10:56:33 +00:00
# log sampled images
sample_imgs = self.forward(z)
grid = torchvision.utils.make_grid(sample_imgs)
self.logger.experiment.add_image(f'generated_images', grid, self.current_epoch)
def main(hparams):
2019-10-14 10:56:33 +00:00
# ------------------------
# 1 INIT LIGHTNING MODEL
# ------------------------
model = GAN(hparams)
2019-10-14 10:56:33 +00:00
# ------------------------
# 2 INIT TRAINER
# ------------------------
2019-10-18 22:26:50 +00:00
trainer = pl.Trainer()
2019-10-14 10:56:33 +00:00
# ------------------------
# 3 START TRAINING
# ------------------------
trainer.fit(model)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5,
help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999,
help="adam: decay of first order momentum of gradient")
parser.add_argument("--latent_dim", type=int, default=100,
help="dimensionality of the latent space")
hparams = parser.parse_args()
main(hparams)