lightning/README.md

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

632 lines
23 KiB
Markdown
Raw Normal View History

2019-08-06 20:37:58 +00:00
<div align="center">
2023-03-15 20:02:10 +00:00
2023-03-16 20:56:47 +00:00
<img alt="Lightning" src="https://pl-public-data.s3.amazonaws.com/assets_lightning/LightningColor.png" width="800px" style="max-width: 100%;">
2023-03-15 20:02:10 +00:00
<br/>
<br/>
2019-08-05 20:02:48 +00:00
2023-11-29 16:39:25 +00:00
**The deep learning framework to train, finetune and deploy AI models.**
2021-02-13 17:27:44 +00:00
2023-11-29 16:39:25 +00:00
**NEW- Lightning 2.0 features a clean and stable API!!**
2023-03-16 20:56:47 +00:00
______________________________________________________________________
2022-06-16 20:21:14 +00:00
<p align="center">
<a href="https://lightning.ai/">Lightning.ai</a>
2023-03-16 12:12:17 +00:00
<a href="https://lightning.ai/docs/pytorch/stable/">PyTorch Lightning</a>
<a href="https://lightning.ai/docs/fabric/stable/">Fabric</a>
<a href="https://lightning.ai/docs/app/stable/">Lightning Apps</a>
<a href="https://pytorch-lightning.readthedocs.io/en/stable/">Docs</a>
<a href="#community">Community</a>
<a href="https://lightning.ai/docs/pytorch/stable/generated/CONTRIBUTING.html">Contribute</a>
</p>
2021-02-13 17:27:44 +00:00
2022-06-16 20:21:14 +00:00
<!-- DO NOT ADD CONDA DOWNLOADS... README CHANGES MUST BE APPROVED BY EDEN OR WILL -->
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pytorch-lightning)](https://pypi.org/project/pytorch-lightning/)
[![PyPI Status](https://badge.fury.io/py/pytorch-lightning.svg)](https://badge.fury.io/py/pytorch-lightning)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/pytorch-lightning)](https://pepy.tech/project/pytorch-lightning)
2023-04-27 11:54:52 +00:00
[![Conda](https://img.shields.io/conda/v/conda-forge/lightning?label=conda&color=success)](https://anaconda.org/conda-forge/lightning)
2022-08-01 10:52:46 +00:00
[![codecov](https://codecov.io/gh/Lightning-AI/lightning/branch/master/graph/badge.svg?token=SmzX8mnKlA)](https://codecov.io/gh/Lightning-AI/lightning)
2022-06-16 20:21:14 +00:00
[![Discord](https://img.shields.io/discord/1077906959069626439?style=plastic)](https://discord.gg/VptPCZkGNa)
2023-03-24 08:53:20 +00:00
![GitHub commit activity](https://img.shields.io/github/commit-activity/w/lightning-ai/lightning)
[![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/Lightning-AI/lightning/blob/master/LICENSE)
2022-06-16 20:21:14 +00:00
<!--
[![CodeFactor](https://www.codefactor.io/repository/github/Lightning-AI/lightning/badge)](https://www.codefactor.io/repository/github/Lightning-AI/lightning)
2022-06-16 20:21:14 +00:00
-->
</div>
2023-03-16 11:38:33 +00:00
## Install Lightning
2023-03-16 12:12:17 +00:00
Simple installation from PyPI
2023-03-16 11:38:33 +00:00
```bash
pip install lightning
```
2022-06-16 20:21:14 +00:00
2023-03-16 12:12:17 +00:00
<!-- following section will be skipped from PyPI description -->
<details>
<summary>Other installation options</summary>
<!-- following section will be skipped from PyPI description -->
#### Install with optional dependencies
```bash
pip install lightning['extra']
```
#### Conda
```bash
conda install lightning -c conda-forge
```
#### Install stable version
Install future release from the source
```bash
pip install https://github.com/Lightning-AI/lightning/archive/refs/heads/release/stable.zip -U
```
#### Install bleeding-edge
Install nightly from the source (no guarantees)
```bash
pip install https://github.com/Lightning-AI/lightning/archive/refs/heads/master.zip -U
```
or from testing PyPI
```bash
pip install -iU https://test.pypi.org/simple/ pytorch-lightning
```
</details>
<!-- end skipping PyPI description -->
2023-03-16 20:56:47 +00:00
______________________________________________________________________
2023-03-16 12:12:17 +00:00
## Lightning has 3 core packages
[PyTorch Lightning: Train and deploy PyTorch at scale](#pytorch-lightning-train-and-deploy-pytorch-at-scale).
<br/>
[Lightning Fabric: Expert control](#lightning-fabric-expert-control).
<br/>
2023-03-16 20:56:47 +00:00
[Lightning Apps: Build AI products and ML workflows](#lightning-apps-build-ai-products-and-ml-workflows).
2023-03-16 12:27:01 +00:00
2023-03-16 20:56:47 +00:00
Lightning gives you granular control over how much abstraction you want to add over PyTorch.
2023-03-16 12:27:01 +00:00
<div align="center">
<img src="https://pl-public-data.s3.amazonaws.com/assets_lightning/continuum.png" width="80%">
</div>
2023-03-16 12:12:17 +00:00
2023-03-16 20:56:47 +00:00
______________________________________________________________________
2023-03-16 12:12:17 +00:00
2023-03-16 12:27:01 +00:00
# PyTorch Lightning: Train and Deploy PyTorch at Scale
2023-03-16 11:38:33 +00:00
2023-03-16 20:56:47 +00:00
PyTorch Lightning is just organized PyTorch - Lightning disentangles PyTorch code to decouple the science from the engineering.
2022-06-16 20:21:14 +00:00
2022-06-16 20:23:26 +00:00
![PT to PL](docs/source-pytorch/_static/images/general/pl_quick_start_full_compressed.gif)
2023-03-16 20:56:47 +00:00
______________________________________________________________________
2022-06-16 20:21:14 +00:00
2023-03-16 20:56:47 +00:00
### Hello simple model
2022-06-16 20:21:14 +00:00
```python
2023-03-16 11:38:33 +00:00
# main.py
# ! pip install torchvision
import torch, torch.nn as nn, torch.utils.data as data, torchvision as tv, torch.nn.functional as F
import lightning as L
2023-03-16 11:38:33 +00:00
# --------------------------------
2023-03-16 20:56:47 +00:00
# Step 1: Define a LightningModule
2023-03-16 11:38:33 +00:00
# --------------------------------
2023-03-16 20:56:47 +00:00
# A LightningModule (nn.Module subclass) defines a full *system*
# (ie: an LLM, diffusion model, autoencoder, or simple image classifier).
2022-06-16 20:21:14 +00:00
2023-03-16 20:56:47 +00:00
class LitAutoEncoder(L.LightningModule):
2022-06-16 20:21:14 +00:00
def __init__(self):
super().__init__()
self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3))
self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28))
def forward(self, x):
# in lightning, forward defines the prediction/inference actions
embedding = self.encoder(x)
return embedding
def training_step(self, batch, batch_idx):
# training_step defines the train loop. It is independent of forward
x, y = batch
x = x.view(x.size(0), -1)
z = self.encoder(x)
x_hat = self.decoder(z)
loss = F.mse_loss(x_hat, x)
self.log("train_loss", loss)
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
return optimizer
2023-03-16 20:56:47 +00:00
2023-03-16 11:38:33 +00:00
# -------------------
# Step 2: Define data
# -------------------
dataset = tv.datasets.MNIST(".", download=True, transform=tv.transforms.ToTensor())
2023-03-16 11:38:33 +00:00
train, val = data.random_split(dataset, [55000, 5000])
2022-06-16 20:21:14 +00:00
2023-03-16 11:38:33 +00:00
# -------------------
# Step 3: Train
# -------------------
2022-06-16 20:21:14 +00:00
autoencoder = LitAutoEncoder()
trainer = L.Trainer()
2023-03-16 11:38:33 +00:00
trainer.fit(autoencoder, data.DataLoader(train), data.DataLoader(val))
```
Run the model on your terminal
2023-03-16 20:56:47 +00:00
```bash
2023-03-16 11:38:33 +00:00
pip install torchvision
python main.py
2022-06-16 20:21:14 +00:00
```
2023-03-16 20:56:47 +00:00
______________________________________________________________________
2022-06-16 20:21:14 +00:00
## Advanced features
Lightning has over [40+ advanced features](https://lightning.ai/docs/pytorch/stable/common/trainer.html#trainer-flags) designed for professional AI research at scale.
2022-06-16 20:21:14 +00:00
Here are some examples:
<div align="center">
<img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/features_2.jpg" max-height="600px">
</div>
2022-06-16 20:21:14 +00:00
<details>
2023-03-16 12:12:17 +00:00
<summary>Train on 1000s of GPUs without code changes</summary>
2022-06-16 20:21:14 +00:00
```python
# 8 GPUs
# no code changes needed
2023-03-16 12:12:17 +00:00
trainer = Trainer(accelerator="gpu", devices=8)
2022-06-16 20:21:14 +00:00
# 256 GPUs
2023-03-16 12:12:17 +00:00
trainer = Trainer(accelerator="gpu", devices=8, num_nodes=32)
2022-06-16 20:21:14 +00:00
```
2023-03-16 20:56:47 +00:00
2023-03-16 12:12:17 +00:00
</details>
2022-06-16 20:21:14 +00:00
2023-03-16 12:12:17 +00:00
<details>
<summary>Train on other accelerators like TPUs without code changes</summary>
2022-06-16 20:21:14 +00:00
```python
# no code changes needed
trainer = Trainer(accelerator="tpu", devices=8)
```
2023-03-16 20:56:47 +00:00
2023-03-16 12:12:17 +00:00
</details>
2022-06-16 20:21:14 +00:00
2023-03-16 12:12:17 +00:00
<details>
<summary>16-bit precision</summary>
2022-06-16 20:21:14 +00:00
```python
# no code changes needed
trainer = Trainer(precision=16)
```
2023-03-16 12:12:17 +00:00
</details>
<details>
<summary>Experiment managers</summary>
2022-06-16 20:21:14 +00:00
```python
from lightning import loggers
2022-06-16 20:21:14 +00:00
# tensorboard
trainer = Trainer(logger=TensorBoardLogger("logs/"))
# weights and biases
trainer = Trainer(logger=loggers.WandbLogger())
# comet
trainer = Trainer(logger=loggers.CometLogger())
# mlflow
trainer = Trainer(logger=loggers.MLFlowLogger())
# neptune
trainer = Trainer(logger=loggers.NeptuneLogger())
# ... and dozens more
```
2023-03-16 12:12:17 +00:00
</details>
<details>
2023-03-16 20:56:47 +00:00
<summary>Early Stopping</summary>
2022-06-16 20:21:14 +00:00
```python
es = EarlyStopping(monitor="val_loss")
trainer = Trainer(callbacks=[es])
```
2023-03-16 20:56:47 +00:00
2023-03-16 12:12:17 +00:00
</details>
2022-06-16 20:21:14 +00:00
2023-03-16 12:12:17 +00:00
<details>
<summary>Checkpointing</summary>
2022-06-16 20:21:14 +00:00
```python
checkpointing = ModelCheckpoint(monitor="val_loss")
trainer = Trainer(callbacks=[checkpointing])
```
2023-03-16 20:56:47 +00:00
2023-03-16 12:12:17 +00:00
</details>
2022-06-16 20:21:14 +00:00
2023-03-16 12:12:17 +00:00
<details>
<summary>Export to torchscript (JIT) (production use)</summary>
2022-06-16 20:21:14 +00:00
```python
# torchscript
autoencoder = LitAutoEncoder()
torch.jit.save(autoencoder.to_torchscript(), "model.pt")
```
2023-03-16 20:56:47 +00:00
2023-03-16 12:12:17 +00:00
</details>
2022-06-16 20:21:14 +00:00
2023-03-16 12:12:17 +00:00
<details>
<summary>Export to ONNX (production use)</summary>
2022-06-16 20:21:14 +00:00
```python
# onnx
2022-06-16 20:21:14 +00:00
with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as tmpfile:
autoencoder = LitAutoEncoder()
input_sample = torch.randn((1, 64))
2022-06-16 20:21:14 +00:00
autoencoder.to_onnx(tmpfile.name, input_sample, export_params=True)
os.path.isfile(tmpfile.name)
2022-06-16 20:21:14 +00:00
```
</details>
2023-03-16 20:56:47 +00:00
______________________________________________________________________
2022-06-16 20:21:14 +00:00
## Advantages over unstructured PyTorch
- Models become hardware agnostic
- Code is clear to read because engineering code is abstracted away
- Easier to reproduce
- Make fewer mistakes because lightning handles the tricky engineering
- Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate
- Lightning has dozens of integrations with popular machine learning tools.
- [Tested rigorously with every new PR](https://github.com/Lightning-AI/lightning/tree/master/tests). We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs.
2022-06-16 20:21:14 +00:00
- Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch).
2023-03-16 20:56:47 +00:00
______________________________________________________________________
<div align="center">
2023-03-16 12:12:17 +00:00
<a href="https://lightning.ai/docs/pytorch/stable/">Read the PyTorch Lightning docs</a>
</div>
2023-03-16 20:56:47 +00:00
______________________________________________________________________
2023-03-16 12:27:01 +00:00
# Lightning Fabric: Expert control.
2023-03-16 12:12:17 +00:00
2023-03-16 12:39:23 +00:00
Run on any device at any scale with expert-level control over PyTorch training loop and scaling strategy. You can even write your own Trainer.
2023-03-16 12:12:17 +00:00
Fabric is designed for the most complex models like foundation model scaling, LLMs, diffusion, transformers, reinforcement learning, active learning. Of any size.
<table>
<tr>
<th>What to change</th>
<th>Resulting Fabric Code (copy me!)</th>
</tr>
<tr>
<td>
<sub>
```diff
+ import lightning as L
import torch; import torchvision as tv
dataset = tv.datasets.CIFAR10("data", download=True,
train=True,
transform=tv.transforms.ToTensor())
+ fabric = L.Fabric()
+ fabric.launch()
model = tv.models.resnet18()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
- device = "cuda" if torch.cuda.is_available() else "cpu"
- model.to(device)
+ model, optimizer = fabric.setup(model, optimizer)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)
+ dataloader = fabric.setup_dataloaders(dataloader)
model.train()
num_epochs = 10
for epoch in range(num_epochs):
for batch in dataloader:
inputs, labels = batch
- inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = torch.nn.functional.cross_entropy(outputs, labels)
- loss.backward()
+ fabric.backward(loss)
optimizer.step()
2023-05-27 03:06:31 +00:00
print(loss.data)
```
</sub>
<td>
<sub>
```Python
import lightning as L
import torch; import torchvision as tv
dataset = tv.datasets.CIFAR10("data", download=True,
train=True,
transform=tv.transforms.ToTensor())
fabric = L.Fabric()
fabric.launch()
model = tv.models.resnet18()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
model, optimizer = fabric.setup(model, optimizer)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)
dataloader = fabric.setup_dataloaders(dataloader)
model.train()
num_epochs = 10
for epoch in range(num_epochs):
for batch in dataloader:
inputs, labels = batch
optimizer.zero_grad()
outputs = model(inputs)
loss = torch.nn.functional.cross_entropy(outputs, labels)
fabric.backward(loss)
optimizer.step()
2023-05-27 03:06:31 +00:00
print(loss.data)
```
</sub>
</td>
</tr>
</table>
2023-03-16 12:12:17 +00:00
## Key features
<details>
<summary>Easily switch from running on CPU to GPU (Apple Silicon, CUDA, …), TPU, multi-GPU or even multi-node training</summary>
```python
# Use your available hardware
# no code changes needed
fabric = Fabric()
# Run on GPUs (CUDA or MPS)
fabric = Fabric(accelerator="gpu")
# 8 GPUs
fabric = Fabric(accelerator="gpu", devices=8)
# 256 GPUs, multi-node
fabric = Fabric(accelerator="gpu", devices=8, num_nodes=32)
# Run on TPUs
fabric = Fabric(accelerator="tpu")
```
</details>
<details>
<summary>Use state-of-the-art distributed training strategies (DDP, FSDP, DeepSpeed) and mixed precision out of the box</summary>
```python
# Use state-of-the-art distributed training techniques
fabric = Fabric(strategy="ddp")
fabric = Fabric(strategy="deepspeed")
fabric = Fabric(strategy="fsdp")
# Switch the precision
fabric = Fabric(precision="16-mixed")
fabric = Fabric(precision="64")
```
</details>
<details>
<summary>All the device logic boilerplate is handled for you</summary>
```diff
# no more of this!
- model.to(device)
- batch.to(device)
```
</details>
<details>
<summary>Build your own custom Trainer using Fabric primitives for training checkpointing, logging, and more</summary>
```python
import lightning as L
class MyCustomTrainer:
def __init__(self, accelerator="auto", strategy="auto", devices="auto", precision="32-true"):
self.fabric = L.Fabric(accelerator=accelerator, strategy=strategy, devices=devices, precision=precision)
def fit(self, model, optimizer, dataloader, max_epochs):
self.fabric.launch()
model, optimizer = self.fabric.setup(model, optimizer)
dataloader = self.fabric.setup_dataloaders(dataloader)
model.train()
for epoch in range(max_epochs):
for batch in dataloader:
input, target = batch
optimizer.zero_grad()
output = model(input)
loss = loss_fn(output, target)
self.fabric.backward(loss)
optimizer.step()
```
You can find a more extensive example in our [examples](examples/fabric/build_your_own_trainer)
</details>
2023-03-16 20:56:47 +00:00
______________________________________________________________________
2023-03-16 12:27:01 +00:00
<div align="center">
<a href="https://lightning.ai/docs/fabric/stable/">Read the Lightning Fabric docs</a>
</div>
2023-03-16 12:12:17 +00:00
2023-03-16 20:56:47 +00:00
______________________________________________________________________
2023-03-16 12:12:17 +00:00
2023-03-16 12:27:01 +00:00
# Lightning Apps: Build AI products and ML workflows
2023-03-16 12:27:01 +00:00
Lightning Apps remove the cloud infrastructure boilerplate so you can focus on solving the research or business problems. Lightning Apps can run on the Lightning Cloud, your own cluster or a private cloud.
<div align="center">
<img src="https://pl-public-data.s3.amazonaws.com/assets_lightning/lightning-apps-teaser.png" width="80%">
</div>
2023-03-16 12:27:01 +00:00
## Hello Lightning app world
2023-03-16 12:27:01 +00:00
```python
# app.py
import lightning as L
2023-03-16 20:56:47 +00:00
2023-03-16 12:27:01 +00:00
class TrainComponent(L.LightningWork):
def run(self, x):
2023-03-16 20:56:47 +00:00
print(f"train a model on {x}")
2023-03-16 12:27:01 +00:00
class AnalyzeComponent(L.LightningWork):
def run(self, x):
2023-03-16 20:56:47 +00:00
print(f"analyze model on {x}")
2023-03-16 12:27:01 +00:00
class WorkflowOrchestrator(L.LightningFlow):
def __init__(self) -> None:
super().__init__()
2023-03-16 20:56:47 +00:00
self.train = TrainComponent(cloud_compute=L.CloudCompute("cpu"))
self.analyze = AnalyzeComponent(cloud_compute=L.CloudCompute("gpu"))
2023-03-16 12:27:01 +00:00
def run(self):
self.train.run("CPU machine 1")
self.analyze.run("GPU machine 2")
2023-03-16 20:56:47 +00:00
2023-03-16 12:27:01 +00:00
app = L.LightningApp(WorkflowOrchestrator())
```
2023-03-16 12:27:01 +00:00
Run on the cloud or locally
2023-03-16 12:27:01 +00:00
```bash
# run on the cloud
lightning run app app.py --setup --cloud
2023-03-16 12:27:01 +00:00
# run locally
lightning run app app.py
```
2023-03-16 20:56:47 +00:00
______________________________________________________________________
2023-03-16 12:27:01 +00:00
<div align="center">
<a href="https://lightning.ai/docs/app/stable/">Read the Lightning Apps docs</a>
</div>
2023-03-16 20:56:47 +00:00
______________________________________________________________________
2023-03-16 12:12:17 +00:00
## Examples
###### Self-supervised Learning
- [CPC transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#cpc-transforms)
- [Moco v2 transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#moco-v2-transforms)
2023-03-16 12:12:17 +00:00
- [SimCLR transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#simclr-transforms)
###### Convolutional Architectures
- [GPT-2](https://lightning-bolts.readthedocs.io/en/stable/models/convolutional.html#gpt-2)
- [UNet](https://lightning-bolts.readthedocs.io/en/stable/models/convolutional.html#unet)
###### Reinforcement Learning
- [DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#dqn-loss)
- [Double DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#double-dqn-loss)
- [Per DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#per-dqn-loss)
###### GANs
- [Basic GAN](https://lightning-bolts.readthedocs.io/en/stable/models/gans.html#basic-gan)
- [DCGAN](https://lightning-bolts.readthedocs.io/en/stable/models/gans.html#dcgan)
###### Classic ML
- [Logistic Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#logistic-regression)
- [Linear Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#linear-regression)
2023-03-16 20:56:47 +00:00
______________________________________________________________________
## Continuous Integration
2023-10-13 13:58:31 +00:00
Lightning is rigorously tested across multiple CPUs, GPUs and TPUs and against major Python and PyTorch versions.
###### \*Codecov is > 90%+ but build delays may show less
<details>
<summary>Current build statuses</summary>
<center>
2023-10-13 13:58:31 +00:00
| System / PyTorch ver. | 1.12 | 1.13 | 2.0 | 2.1 |
| :--------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| Linux py3.9 \[GPUs\] | | | | [![Build Status](https://dev.azure.com/Lightning-AI/lightning/_apis/build/status%2Fpytorch-lightning%20%28GPUs%29?branchName=master)](https://dev.azure.com/Lightning-AI/lightning/_build/latest?definitionId=24&branchName=master) |
| Linux py3.9 \[TPUs\] | | | [![Test PyTorch - TPU](https://github.com/Lightning-AI/lightning/actions/workflows/tpu-tests.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/tpu-tests.yml) | |
| Linux (multiple Python versions) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) |
| OSX (multiple Python versions) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) |
| Windows (multiple Python versions) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) |
</center>
</details>
2023-03-16 20:56:47 +00:00
______________________________________________________________________
2022-06-16 20:21:14 +00:00
## Community
The lightning community is maintained by
- [10+ core contributors](https://lightning.ai/docs/pytorch/latest/community/governance.html) who are all a mix of professional engineers, Research Scientists, and Ph.D. students from top AI labs.
- 800+ community contributors.
2022-06-16 20:21:14 +00:00
Want to help us build Lightning and reduce boilerplate for thousands of researchers? [Learn how to make your first contribution here](https://lightning.ai/docs/pytorch/stable/generated/CONTRIBUTING.html)
2022-06-16 20:21:14 +00:00
Lightning is also part of the [PyTorch ecosystem](https://pytorch.org/ecosystem/) which requires projects to have solid testing, documentation and support.
### Asking for help
If you have any questions please:
1. [Read the docs](https://lightning.ai/docs).
1. [Search through existing Discussions](https://github.com/Lightning-AI/lightning/discussions), or [add a new question](https://github.com/Lightning-AI/lightning/discussions/new)
1. [Join our discord](https://discord.com/invite/tfXFetEZxv).