lightning/tests/models/test_horovod.py

365 lines
14 KiB
Python
Raw Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import platform
import shlex
import subprocess
import sys
import numpy as np
import pytest
deprecate enable_pl_optimizer as it is not restored properly (#5244) * update * clean test * still in progress * udpdate test * update * update * resolve flake * add test for zero_grad * update * works without accumulated_grad * update * update * resolve amp * revert back to True * update * clean tests * cleaned out * typo * update test * git repare bug * remove print * udpate * Fix formatting/optimizer imports * Refactor the test for cleanliness * Add vanilla model to the test, better var names * Fixed var names, let's clean up these mock tests * repare test * update test * resolve flake8 * add manual_optimization * update tests * resolve flake8 * add random accumulate_grad_batches * improve test * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update * clean tests * correct bug * Apply suggestions from code review * format * adress comments * update on comments * wip * typo * depreceate enable_pl_optimizer * resolve latest bugs * update * resolve merge * add comment * Update pytorch_lightning/core/lightning.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/deprecated_api/test_remove_1-3.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/optimizer_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update restore * add a property * remove setstate as not needed anymore * update test * provide optimizer to on_before_zero_grad * update on comments * update on comments * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * mofidy import * update changelog * resolve flake8 * update * update * clean doc Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-62-109.ec2.internal> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> (cherry picked from commit f2e99d617f05ec65fded81ccc6d0d59807c47573)
2021-01-08 21:13:12 +00:00
import torch
2021-01-23 23:52:04 +00:00
from sklearn.metrics import accuracy_score
2021-01-23 23:52:04 +00:00
import tests.base.develop_pipelines as tpipes
import tests.base.develop_utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.accelerators.legacy.horovod_accelerator import HorovodAccelerator
from pytorch_lightning.metrics.classification.accuracy import Accuracy
from pytorch_lightning.trainer.states import TrainerState
from pytorch_lightning.utilities import _APEX_AVAILABLE, _HOROVOD_AVAILABLE, _NATIVE_AMP_AVAILABLE
from tests.base import EvalModelTemplate
from tests.base.boring_model import BoringModel
from tests.base.models import BasicGAN
if _HOROVOD_AVAILABLE:
import horovod
import horovod.torch as hvd
# This script will run the actual test model training in parallel
TEST_SCRIPT = os.path.join(os.path.dirname(__file__), 'data', 'horovod', 'train_default_model.py')
try:
from horovod.common.util import nccl_built
nccl_built()
except (ImportError, ModuleNotFoundError, AttributeError):
2020-12-23 23:11:42 +00:00
_HOROVOD_NCCL_AVAILABLE = False
finally:
2020-12-23 23:11:42 +00:00
_HOROVOD_NCCL_AVAILABLE = True
def _run_horovod(trainer_options, on_gpu=False):
"""Execute the training script across multiple workers in parallel."""
num_processes = trainer_options.get('gpus', 2)
# for Horovod, we interpret `gpus` to be set per worker
trainer_options.update(gpus=1 if on_gpu else None)
Option to provide seed to random generators to ensure reproducibility (#1572) * Option to provide seed to random generators to ensure reproducibility I added small function in utilities which imports torch, numpy, python random and sets seed for all of the libraries to ensure reproducibility of results. * Apply recommendations from core contributors on seeding 1. Moved the seeding code to another file 2. Make deterministic as a parameter for trainer class 3. Add assertions for seeding numpy 4. Added warnings 5. torch.manual_seed should be enough for seeding torch * Revert "Apply recommendations from core contributors on seeding" This reverts commit a213c8e6882eec8a9e7408b9418926d2db7c5461. * Revert "Revert "Apply recommendations from core contributors on seeding"" This reverts commit 59b2da53c62878de7aab0aa3feb3115e105eea06. * Change in test, for correct seeding * Allow seed equal to 0 * Allow seed to be uint32.max * Added deterministic to benchmarks * Cuda manual seed as in benchmark seeding * Seeding should be done before model initialization * cuda manual_seed is not necessary * Fixing seed test_cpu_lbfgs On some seeds seems like lbfgs doesn't converge. So I fixed the seed during testing. * rebasing issue with old reproducibility.py * Improved documentation and ability to seed before initializing Train class * Change in docs * Removed seed from trainer, update for documentation * Typo in the docs * Added seed_everything to _all_ * Fixing old changes * Model initialization should be earlier then Trainer * Update pytorch_lightning/trainer/__init__.py From Example to testcode Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Fixing according to the contributors suggestions * Moving horovod deterministic to Trainer class * deterministic flag affects horovod docs update * Improved static typing * Added deterministic to test runners of horovod It is failing on some versions, not very predictable * static seeds for horovod tests * Change for reset_seed function in tests * Seeding horovod using reset_seed from tutils * Update pytorch_lightning/trainer/__init__.py * chlog * Update trainer.py * change "testcode" to "Example" in trainer init documentation * Update pytorch_lightning/trainer/seed.py, first line in comment Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka <jirka.borovec@seznam.cz> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-05-12 11:53:20 +00:00
tutils.reset_seed()
cmdline = [
'horovodrun',
'-np', str(num_processes),
sys.executable, TEST_SCRIPT,
'--trainer-options', shlex.quote(json.dumps(trainer_options))
]
if on_gpu:
cmdline += ['--on-gpu']
exit_code = subprocess.call(' '.join(cmdline), shell=True, env=os.environ.copy())
assert exit_code == 0
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
deprecate enable_pl_optimizer as it is not restored properly (#5244) * update * clean test * still in progress * udpdate test * update * update * resolve flake * add test for zero_grad * update * works without accumulated_grad * update * update * resolve amp * revert back to True * update * clean tests * cleaned out * typo * update test * git repare bug * remove print * udpate * Fix formatting/optimizer imports * Refactor the test for cleanliness * Add vanilla model to the test, better var names * Fixed var names, let's clean up these mock tests * repare test * update test * resolve flake8 * add manual_optimization * update tests * resolve flake8 * add random accumulate_grad_batches * improve test * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update * clean tests * correct bug * Apply suggestions from code review * format * adress comments * update on comments * wip * typo * depreceate enable_pl_optimizer * resolve latest bugs * update * resolve merge * add comment * Update pytorch_lightning/core/lightning.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/deprecated_api/test_remove_1-3.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/optimizer_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update restore * add a property * remove setstate as not needed anymore * update test * provide optimizer to on_before_zero_grad * update on comments * update on comments * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * mofidy import * update changelog * resolve flake8 * update * update * clean doc Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-62-109.ec2.internal> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> (cherry picked from commit f2e99d617f05ec65fded81ccc6d0d59807c47573)
2021-01-08 21:13:12 +00:00
def test_horovod_cpu(tmpdir):
"""Test Horovod running multi-process on CPU."""
trainer_options = dict(
default_root_dir=str(tmpdir),
weights_save_path=str(tmpdir),
gradient_clip_val=1.0,
progress_bar_refresh_rate=0,
max_epochs=1,
limit_train_batches=0.4,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
limit_val_batches=0.2,
accelerator='horovod',
Option to provide seed to random generators to ensure reproducibility (#1572) * Option to provide seed to random generators to ensure reproducibility I added small function in utilities which imports torch, numpy, python random and sets seed for all of the libraries to ensure reproducibility of results. * Apply recommendations from core contributors on seeding 1. Moved the seeding code to another file 2. Make deterministic as a parameter for trainer class 3. Add assertions for seeding numpy 4. Added warnings 5. torch.manual_seed should be enough for seeding torch * Revert "Apply recommendations from core contributors on seeding" This reverts commit a213c8e6882eec8a9e7408b9418926d2db7c5461. * Revert "Revert "Apply recommendations from core contributors on seeding"" This reverts commit 59b2da53c62878de7aab0aa3feb3115e105eea06. * Change in test, for correct seeding * Allow seed equal to 0 * Allow seed to be uint32.max * Added deterministic to benchmarks * Cuda manual seed as in benchmark seeding * Seeding should be done before model initialization * cuda manual_seed is not necessary * Fixing seed test_cpu_lbfgs On some seeds seems like lbfgs doesn't converge. So I fixed the seed during testing. * rebasing issue with old reproducibility.py * Improved documentation and ability to seed before initializing Train class * Change in docs * Removed seed from trainer, update for documentation * Typo in the docs * Added seed_everything to _all_ * Fixing old changes * Model initialization should be earlier then Trainer * Update pytorch_lightning/trainer/__init__.py From Example to testcode Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Fixing according to the contributors suggestions * Moving horovod deterministic to Trainer class * deterministic flag affects horovod docs update * Improved static typing * Added deterministic to test runners of horovod It is failing on some versions, not very predictable * static seeds for horovod tests * Change for reset_seed function in tests * Seeding horovod using reset_seed from tutils * Update pytorch_lightning/trainer/__init__.py * chlog * Update trainer.py * change "testcode" to "Example" in trainer init documentation * Update pytorch_lightning/trainer/seed.py, first line in comment Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka <jirka.borovec@seznam.cz> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-05-12 11:53:20 +00:00
deterministic=True,
)
_run_horovod(trainer_options)
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
deprecate enable_pl_optimizer as it is not restored properly (#5244) * update * clean test * still in progress * udpdate test * update * update * resolve flake * add test for zero_grad * update * works without accumulated_grad * update * update * resolve amp * revert back to True * update * clean tests * cleaned out * typo * update test * git repare bug * remove print * udpate * Fix formatting/optimizer imports * Refactor the test for cleanliness * Add vanilla model to the test, better var names * Fixed var names, let's clean up these mock tests * repare test * update test * resolve flake8 * add manual_optimization * update tests * resolve flake8 * add random accumulate_grad_batches * improve test * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update * clean tests * correct bug * Apply suggestions from code review * format * adress comments * update on comments * wip * typo * depreceate enable_pl_optimizer * resolve latest bugs * update * resolve merge * add comment * Update pytorch_lightning/core/lightning.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/deprecated_api/test_remove_1-3.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/optimizer_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update restore * add a property * remove setstate as not needed anymore * update test * provide optimizer to on_before_zero_grad * update on comments * update on comments * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * mofidy import * update changelog * resolve flake8 * update * update * clean doc Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-62-109.ec2.internal> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> (cherry picked from commit f2e99d617f05ec65fded81ccc6d0d59807c47573)
2021-01-08 21:13:12 +00:00
def test_horovod_cpu_implicit(tmpdir):
"""Test Horovod without specifying a backend, inferring from env set by `horovodrun`."""
trainer_options = dict(
default_root_dir=str(tmpdir),
weights_save_path=str(tmpdir),
gradient_clip_val=1.0,
progress_bar_refresh_rate=0,
max_epochs=1,
limit_train_batches=0.4,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
limit_val_batches=0.2,
Option to provide seed to random generators to ensure reproducibility (#1572) * Option to provide seed to random generators to ensure reproducibility I added small function in utilities which imports torch, numpy, python random and sets seed for all of the libraries to ensure reproducibility of results. * Apply recommendations from core contributors on seeding 1. Moved the seeding code to another file 2. Make deterministic as a parameter for trainer class 3. Add assertions for seeding numpy 4. Added warnings 5. torch.manual_seed should be enough for seeding torch * Revert "Apply recommendations from core contributors on seeding" This reverts commit a213c8e6882eec8a9e7408b9418926d2db7c5461. * Revert "Revert "Apply recommendations from core contributors on seeding"" This reverts commit 59b2da53c62878de7aab0aa3feb3115e105eea06. * Change in test, for correct seeding * Allow seed equal to 0 * Allow seed to be uint32.max * Added deterministic to benchmarks * Cuda manual seed as in benchmark seeding * Seeding should be done before model initialization * cuda manual_seed is not necessary * Fixing seed test_cpu_lbfgs On some seeds seems like lbfgs doesn't converge. So I fixed the seed during testing. * rebasing issue with old reproducibility.py * Improved documentation and ability to seed before initializing Train class * Change in docs * Removed seed from trainer, update for documentation * Typo in the docs * Added seed_everything to _all_ * Fixing old changes * Model initialization should be earlier then Trainer * Update pytorch_lightning/trainer/__init__.py From Example to testcode Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Fixing according to the contributors suggestions * Moving horovod deterministic to Trainer class * deterministic flag affects horovod docs update * Improved static typing * Added deterministic to test runners of horovod It is failing on some versions, not very predictable * static seeds for horovod tests * Change for reset_seed function in tests * Seeding horovod using reset_seed from tutils * Update pytorch_lightning/trainer/__init__.py * chlog * Update trainer.py * change "testcode" to "Example" in trainer init documentation * Update pytorch_lightning/trainer/seed.py, first line in comment Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka <jirka.borovec@seznam.cz> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-05-12 11:53:20 +00:00
deterministic=True,
)
_run_horovod(trainer_options)
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
2020-12-23 23:11:42 +00:00
@pytest.mark.skipif(not _HOROVOD_NCCL_AVAILABLE, reason="test requires Horovod with NCCL support")
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_horovod_multi_gpu(tmpdir):
"""Test Horovod with multi-GPU support."""
trainer_options = dict(
default_root_dir=str(tmpdir),
weights_save_path=str(tmpdir),
gradient_clip_val=1.0,
progress_bar_refresh_rate=0,
max_epochs=1,
limit_train_batches=0.4,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
limit_val_batches=0.2,
Fix ddp tests + .test() (#2512) * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * fix deprecation warnings * added base tests for tpu * added base tests for tpu * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com> * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com>
2020-07-07 16:24:56 +00:00
gpus=2,
Option to provide seed to random generators to ensure reproducibility (#1572) * Option to provide seed to random generators to ensure reproducibility I added small function in utilities which imports torch, numpy, python random and sets seed for all of the libraries to ensure reproducibility of results. * Apply recommendations from core contributors on seeding 1. Moved the seeding code to another file 2. Make deterministic as a parameter for trainer class 3. Add assertions for seeding numpy 4. Added warnings 5. torch.manual_seed should be enough for seeding torch * Revert "Apply recommendations from core contributors on seeding" This reverts commit a213c8e6882eec8a9e7408b9418926d2db7c5461. * Revert "Revert "Apply recommendations from core contributors on seeding"" This reverts commit 59b2da53c62878de7aab0aa3feb3115e105eea06. * Change in test, for correct seeding * Allow seed equal to 0 * Allow seed to be uint32.max * Added deterministic to benchmarks * Cuda manual seed as in benchmark seeding * Seeding should be done before model initialization * cuda manual_seed is not necessary * Fixing seed test_cpu_lbfgs On some seeds seems like lbfgs doesn't converge. So I fixed the seed during testing. * rebasing issue with old reproducibility.py * Improved documentation and ability to seed before initializing Train class * Change in docs * Removed seed from trainer, update for documentation * Typo in the docs * Added seed_everything to _all_ * Fixing old changes * Model initialization should be earlier then Trainer * Update pytorch_lightning/trainer/__init__.py From Example to testcode Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Fixing according to the contributors suggestions * Moving horovod deterministic to Trainer class * deterministic flag affects horovod docs update * Improved static typing * Added deterministic to test runners of horovod It is failing on some versions, not very predictable * static seeds for horovod tests * Change for reset_seed function in tests * Seeding horovod using reset_seed from tutils * Update pytorch_lightning/trainer/__init__.py * chlog * Update trainer.py * change "testcode" to "Example" in trainer init documentation * Update pytorch_lightning/trainer/seed.py, first line in comment Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka <jirka.borovec@seznam.cz> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-05-12 11:53:20 +00:00
deterministic=True,
accelerator='horovod',
)
_run_horovod(trainer_options, on_gpu=True)
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
2020-12-23 23:11:42 +00:00
@pytest.mark.skipif(not _HOROVOD_NCCL_AVAILABLE, reason="test requires Horovod with NCCL support")
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(not _APEX_AVAILABLE, reason="test requires apex")
def test_horovod_apex(tmpdir):
"""Test Horovod with multi-GPU support using apex amp."""
trainer_options = dict(
default_root_dir=str(tmpdir),
weights_save_path=str(tmpdir),
gradient_clip_val=1.0,
progress_bar_refresh_rate=0,
max_epochs=1,
limit_train_batches=0.4,
limit_val_batches=0.2,
gpus=2,
deterministic=True,
accelerator='horovod',
amp_backend='apex',
precision=16,
)
_run_horovod(trainer_options, on_gpu=True)
@pytest.mark.skip(reason="Skip till Horovod fixes integration with Native torch.cuda.amp")
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
2020-12-23 23:11:42 +00:00
@pytest.mark.skipif(not _HOROVOD_NCCL_AVAILABLE, reason="test requires Horovod with NCCL support")
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(not _NATIVE_AMP_AVAILABLE, reason="test requires torch.cuda.amp")
def test_horovod_amp(tmpdir):
"""Test Horovod with multi-GPU support using native amp."""
trainer_options = dict(
default_root_dir=str(tmpdir),
weights_save_path=str(tmpdir),
gradient_clip_val=1.0,
progress_bar_refresh_rate=0,
max_epochs=1,
limit_train_batches=0.4,
limit_val_batches=0.2,
gpus=2,
deterministic=True,
accelerator='horovod',
amp_backend='native',
precision=16,
)
_run_horovod(trainer_options, on_gpu=True)
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
2020-12-23 23:11:42 +00:00
@pytest.mark.skipif(not _HOROVOD_NCCL_AVAILABLE, reason="test requires Horovod with NCCL support")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
def test_horovod_transfer_batch_to_gpu(tmpdir):
class TestTrainingStepModel(EvalModelTemplate):
def training_step(self, batch, *args, **kwargs):
x, y = batch
assert str(x.device) != 'cpu'
assert str(y.device) != 'cpu'
return super(TestTrainingStepModel, self).training_step(batch, *args, **kwargs)
def validation_step(self, batch, *args, **kwargs):
x, y = batch
assert str(x.device) != 'cpu'
assert str(y.device) != 'cpu'
return super(TestTrainingStepModel, self).validation_step(batch, *args, **kwargs)
hparams = EvalModelTemplate.get_default_hparams()
Fix ddp tests + .test() (#2512) * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * fix deprecation warnings * added base tests for tpu * added base tests for tpu * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com> * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu * added base tests for tpu Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com>
2020-07-07 16:24:56 +00:00
model = TestTrainingStepModel(**hparams)
trainer_options = dict(
default_root_dir=str(tmpdir),
progress_bar_refresh_rate=0,
max_epochs=1,
limit_train_batches=0.4,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
limit_val_batches=0.2,
gpus=1,
Option to provide seed to random generators to ensure reproducibility (#1572) * Option to provide seed to random generators to ensure reproducibility I added small function in utilities which imports torch, numpy, python random and sets seed for all of the libraries to ensure reproducibility of results. * Apply recommendations from core contributors on seeding 1. Moved the seeding code to another file 2. Make deterministic as a parameter for trainer class 3. Add assertions for seeding numpy 4. Added warnings 5. torch.manual_seed should be enough for seeding torch * Revert "Apply recommendations from core contributors on seeding" This reverts commit a213c8e6882eec8a9e7408b9418926d2db7c5461. * Revert "Revert "Apply recommendations from core contributors on seeding"" This reverts commit 59b2da53c62878de7aab0aa3feb3115e105eea06. * Change in test, for correct seeding * Allow seed equal to 0 * Allow seed to be uint32.max * Added deterministic to benchmarks * Cuda manual seed as in benchmark seeding * Seeding should be done before model initialization * cuda manual_seed is not necessary * Fixing seed test_cpu_lbfgs On some seeds seems like lbfgs doesn't converge. So I fixed the seed during testing. * rebasing issue with old reproducibility.py * Improved documentation and ability to seed before initializing Train class * Change in docs * Removed seed from trainer, update for documentation * Typo in the docs * Added seed_everything to _all_ * Fixing old changes * Model initialization should be earlier then Trainer * Update pytorch_lightning/trainer/__init__.py From Example to testcode Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Fixing according to the contributors suggestions * Moving horovod deterministic to Trainer class * deterministic flag affects horovod docs update * Improved static typing * Added deterministic to test runners of horovod It is failing on some versions, not very predictable * static seeds for horovod tests * Change for reset_seed function in tests * Seeding horovod using reset_seed from tutils * Update pytorch_lightning/trainer/__init__.py * chlog * Update trainer.py * change "testcode" to "Example" in trainer init documentation * Update pytorch_lightning/trainer/seed.py, first line in comment Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka <jirka.borovec@seznam.cz> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-05-12 11:53:20 +00:00
deterministic=True,
accelerator='horovod',
)
tpipes.run_model_test_without_loggers(trainer_options, model)
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
deprecate enable_pl_optimizer as it is not restored properly (#5244) * update * clean test * still in progress * udpdate test * update * update * resolve flake * add test for zero_grad * update * works without accumulated_grad * update * update * resolve amp * revert back to True * update * clean tests * cleaned out * typo * update test * git repare bug * remove print * udpate * Fix formatting/optimizer imports * Refactor the test for cleanliness * Add vanilla model to the test, better var names * Fixed var names, let's clean up these mock tests * repare test * update test * resolve flake8 * add manual_optimization * update tests * resolve flake8 * add random accumulate_grad_batches * improve test * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update * clean tests * correct bug * Apply suggestions from code review * format * adress comments * update on comments * wip * typo * depreceate enable_pl_optimizer * resolve latest bugs * update * resolve merge * add comment * Update pytorch_lightning/core/lightning.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/deprecated_api/test_remove_1-3.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/optimizer_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update restore * add a property * remove setstate as not needed anymore * update test * provide optimizer to on_before_zero_grad * update on comments * update on comments * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * mofidy import * update changelog * resolve flake8 * update * update * clean doc Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-62-109.ec2.internal> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> (cherry picked from commit f2e99d617f05ec65fded81ccc6d0d59807c47573)
2021-01-08 21:13:12 +00:00
def test_horovod_multi_optimizer(tmpdir):
model = BasicGAN(**EvalModelTemplate.get_default_hparams())
# fit model
trainer = Trainer(
default_root_dir=str(tmpdir),
progress_bar_refresh_rate=0,
max_epochs=1,
limit_train_batches=0.4,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
limit_val_batches=0.2,
Option to provide seed to random generators to ensure reproducibility (#1572) * Option to provide seed to random generators to ensure reproducibility I added small function in utilities which imports torch, numpy, python random and sets seed for all of the libraries to ensure reproducibility of results. * Apply recommendations from core contributors on seeding 1. Moved the seeding code to another file 2. Make deterministic as a parameter for trainer class 3. Add assertions for seeding numpy 4. Added warnings 5. torch.manual_seed should be enough for seeding torch * Revert "Apply recommendations from core contributors on seeding" This reverts commit a213c8e6882eec8a9e7408b9418926d2db7c5461. * Revert "Revert "Apply recommendations from core contributors on seeding"" This reverts commit 59b2da53c62878de7aab0aa3feb3115e105eea06. * Change in test, for correct seeding * Allow seed equal to 0 * Allow seed to be uint32.max * Added deterministic to benchmarks * Cuda manual seed as in benchmark seeding * Seeding should be done before model initialization * cuda manual_seed is not necessary * Fixing seed test_cpu_lbfgs On some seeds seems like lbfgs doesn't converge. So I fixed the seed during testing. * rebasing issue with old reproducibility.py * Improved documentation and ability to seed before initializing Train class * Change in docs * Removed seed from trainer, update for documentation * Typo in the docs * Added seed_everything to _all_ * Fixing old changes * Model initialization should be earlier then Trainer * Update pytorch_lightning/trainer/__init__.py From Example to testcode Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Fixing according to the contributors suggestions * Moving horovod deterministic to Trainer class * deterministic flag affects horovod docs update * Improved static typing * Added deterministic to test runners of horovod It is failing on some versions, not very predictable * static seeds for horovod tests * Change for reset_seed function in tests * Seeding horovod using reset_seed from tutils * Update pytorch_lightning/trainer/__init__.py * chlog * Update trainer.py * change "testcode" to "Example" in trainer init documentation * Update pytorch_lightning/trainer/seed.py, first line in comment Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka <jirka.borovec@seznam.cz> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-05-12 11:53:20 +00:00
deterministic=True,
accelerator='horovod',
)
trainer.fit(model)
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
assert len(trainer.optimizers) == 2
for i, optimizer in enumerate(trainer.optimizers):
assert hasattr(optimizer, 'synchronize'), 'optimizer has not been wrapped into DistributedOptimizer'
def get_model_params(model):
return set([p for p in model.parameters()])
def get_optimizer_params(optimizer):
return set([p for group in optimizer.param_groups for p in group.get('params', [])])
assert get_model_params(model.generator) != get_model_params(model.discriminator)
assert get_model_params(model.generator) == get_optimizer_params(trainer.optimizers[0])
assert get_model_params(model.discriminator) == get_optimizer_params(trainer.optimizers[1])
@pytest.mark.skipif(not _HOROVOD_AVAILABLE, reason="Horovod is unavailable")
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
deprecate enable_pl_optimizer as it is not restored properly (#5244) * update * clean test * still in progress * udpdate test * update * update * resolve flake * add test for zero_grad * update * works without accumulated_grad * update * update * resolve amp * revert back to True * update * clean tests * cleaned out * typo * update test * git repare bug * remove print * udpate * Fix formatting/optimizer imports * Refactor the test for cleanliness * Add vanilla model to the test, better var names * Fixed var names, let's clean up these mock tests * repare test * update test * resolve flake8 * add manual_optimization * update tests * resolve flake8 * add random accumulate_grad_batches * improve test * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update * clean tests * correct bug * Apply suggestions from code review * format * adress comments * update on comments * wip * typo * depreceate enable_pl_optimizer * resolve latest bugs * update * resolve merge * add comment * Update pytorch_lightning/core/lightning.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/deprecated_api/test_remove_1-3.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/connectors/optimizer_connector.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * update on comments * update restore * add a property * remove setstate as not needed anymore * update test * provide optimizer to on_before_zero_grad * update on comments * update on comments * Update pytorch_lightning/trainer/trainer.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update tests/trainer/optimization/test_parity_automatic_optimization.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * mofidy import * update changelog * resolve flake8 * update * update * clean doc Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-62-109.ec2.internal> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> (cherry picked from commit f2e99d617f05ec65fded81ccc6d0d59807c47573)
2021-01-08 21:13:12 +00:00
def test_result_reduce_horovod(tmpdir):
"""Make sure result logging works with Horovod.
This test mirrors tests/core/test_results.py::_ddp_test_fn
"""
tutils.reset_seed()
tutils.set_random_master_port()
def hvd_test_fn():
path_here = os.path.abspath(os.path.dirname(__file__))
path_root = os.path.abspath(os.path.join(path_here, '..', '..'))
sys.path.insert(0, os.path.abspath(path_root))
class TestModel(BoringModel):
def training_step(self, batch, batch_idx):
self.training_step_called = True
tensor = torch.tensor([1.0])
self.log("test_tensor", tensor, sync_dist=True, sync_dist_op='sum',
on_step=True, on_epoch=True)
res = self._results
# Check that `tensor` is summed across all ranks automatically
assert res["test_tensor"].item() == hvd.size(), \
"Result-Log does not work properly with Horovod and Tensors"
def training_epoch_end(self, outputs) -> None:
assert len(outputs) == 0
model = TestModel()
model.val_dataloader = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
weights_summary=None,
)
trainer.fit(model)
horovod.run(hvd_test_fn, np=2)
@pytest.mark.skipif(not _HOROVOD_AVAILABLE, reason="Horovod is unavailable")
@pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
def test_accuracy_metric_horovod():
num_batches = 10
batch_size = 16
threshold = 0.5
def sk_metric(preds, target):
sk_preds = (preds.view(-1).numpy() >= threshold).astype(np.uint8)
sk_target = target.view(-1).numpy()
return accuracy_score(y_true=sk_target, y_pred=sk_preds)
preds = torch.rand(num_batches, batch_size)
target = torch.randint(high=2, size=(num_batches, batch_size))
def _compute_batch():
trainer = Trainer(
fast_dev_run=True,
accelerator='horovod',
)
accelerator_backend = trainer.accelerator_connector.select_accelerator()
assert isinstance(accelerator_backend, HorovodAccelerator)
metric = Accuracy(compute_on_step=True,
dist_sync_on_step=True,
dist_sync_fn=accelerator_backend.gather_all_tensors,
threshold=threshold)
for i in range(hvd.rank(), num_batches, hvd.size()):
batch_result = metric(preds[i], target[i])
if hvd.rank() == 0:
dist_preds = torch.stack([preds[i + r] for r in range(hvd.size())])
dist_target = torch.stack([target[i + r] for r in range(hvd.size())])
sk_batch_result = sk_metric(dist_preds, dist_target)
assert np.allclose(batch_result.numpy(), sk_batch_result)
# check on all batches on all ranks
result = metric.compute()
assert isinstance(result, torch.Tensor)
total_preds = torch.stack([preds[i] for i in range(num_batches)])
total_target = torch.stack([target[i] for i in range(num_batches)])
sk_result = sk_metric(total_preds, total_target)
assert np.allclose(result.numpy(), sk_result)
horovod.run(_compute_batch, np=2)
# @pytest.mark.skipif(platform.system() == "Windows", reason="Horovod is not supported on Windows")
# def test_horovod_multi_optimizer_with_scheduling_stepping(tmpdir):
# hparams = EvalModelTemplate.get_default_hparams()
# model = EvalModelTemplate(**hparams)
# model.configure_optimizers = model.configure_optimizers__multiple_schedulers
#
# num_workers = 8
# init_lr = hparams.get('learning_rate') * num_workers
#
# with patch('pytorch_lightning.accelerators.legacy.horovod_backend.hvd.size') as mock_hvd_size:
# mock_hvd_size.return_value = 8
#
# # fit model
# trainer = Trainer(
# default_root_dir=tmpdir,
# max_epochs=1,
# limit_val_batches=0.5,
# limit_train_batches=0.2,
# distributed_backend='horovod'
# )
# results = trainer.fit(model)
# assert results == 1
#
# adjusted_lr1 = [pg['lr'] for pg in trainer.optimizers[0].param_groups][0]
# adjusted_lr2 = [pg['lr'] for pg in trainer.optimizers[1].param_groups][0]
#
# # Called ones after end of epoch with gamma=0.1
# assert pytest.approx(init_lr * 0.1) == adjusted_lr1
#
# # Called every 3 steps, meaning for 1 epoch of 11 batches, it is called 3 times with gamma=0.1
# assert pytest.approx(init_lr * 0.1) == adjusted_lr2