2020-09-23 04:19:46 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from argparse import ArgumentParser
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
from torch.nn import functional as F
|
|
|
|
from torch.utils.data import DataLoader, random_split
|
2020-09-23 21:58:03 +00:00
|
|
|
|
|
|
|
try:
|
|
|
|
from torchvision.datasets.mnist import MNIST
|
|
|
|
from torchvision import transforms
|
|
|
|
except Exception as e:
|
|
|
|
from tests.base.datasets import MNIST
|
2020-09-23 04:19:46 +00:00
|
|
|
|
|
|
|
|
|
|
|
class Backbone(torch.nn.Module):
|
|
|
|
def __init__(self, hidden_dim=128):
|
|
|
|
super().__init__()
|
|
|
|
self.l1 = torch.nn.Linear(28 * 28, hidden_dim)
|
|
|
|
self.l2 = torch.nn.Linear(hidden_dim, 10)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x.view(x.size(0), -1)
|
|
|
|
x = torch.relu(self.l1(x))
|
|
|
|
x = torch.relu(self.l2(x))
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class LitClassifier(pl.LightningModule):
|
|
|
|
def __init__(self, backbone, learning_rate=1e-3):
|
|
|
|
super().__init__()
|
|
|
|
self.save_hyperparameters()
|
|
|
|
self.backbone = backbone
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
# use forward for inference/predictions
|
|
|
|
embedding = self.backbone(x)
|
|
|
|
return embedding
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
|
|
x, y = batch
|
|
|
|
y_hat = self.backbone(x)
|
|
|
|
loss = F.cross_entropy(y_hat, y)
|
2020-10-01 06:31:11 +00:00
|
|
|
self.log('train_loss', loss, on_epoch=True)
|
2020-09-23 04:19:46 +00:00
|
|
|
return loss
|
|
|
|
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
|
|
x, y = batch
|
|
|
|
y_hat = self.backbone(x)
|
|
|
|
loss = F.cross_entropy(y_hat, y)
|
2020-10-01 06:31:11 +00:00
|
|
|
self.log('valid_loss', loss, on_step=True)
|
2020-09-23 04:19:46 +00:00
|
|
|
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
|
|
x, y = batch
|
|
|
|
y_hat = self.backbone(x)
|
|
|
|
loss = F.cross_entropy(y_hat, y)
|
2020-09-30 12:31:16 +00:00
|
|
|
self.log('test_loss', loss)
|
2020-09-23 04:19:46 +00:00
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
# self.hparams available because we called self.save_hyperparameters()
|
|
|
|
return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def add_model_specific_args(parent_parser):
|
|
|
|
parser = ArgumentParser(parents=[parent_parser], add_help=False)
|
|
|
|
parser.add_argument('--learning_rate', type=float, default=0.0001)
|
|
|
|
return parser
|
|
|
|
|
|
|
|
|
|
|
|
def cli_main():
|
|
|
|
pl.seed_everything(1234)
|
|
|
|
|
|
|
|
# ------------
|
|
|
|
# args
|
|
|
|
# ------------
|
|
|
|
parser = ArgumentParser()
|
|
|
|
parser.add_argument('--batch_size', default=32, type=int)
|
|
|
|
parser.add_argument('--hidden_dim', type=int, default=128)
|
|
|
|
parser = pl.Trainer.add_argparse_args(parser)
|
|
|
|
parser = LitClassifier.add_model_specific_args(parser)
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
# ------------
|
|
|
|
# data
|
|
|
|
# ------------
|
2020-09-23 21:58:03 +00:00
|
|
|
dataset = MNIST('', train=True, download=True, transform=transforms.ToTensor())
|
|
|
|
mnist_test = MNIST('', train=False, download=True, transform=transforms.ToTensor())
|
2020-09-23 04:19:46 +00:00
|
|
|
mnist_train, mnist_val = random_split(dataset, [55000, 5000])
|
|
|
|
|
|
|
|
train_loader = DataLoader(mnist_train, batch_size=args.batch_size)
|
|
|
|
val_loader = DataLoader(mnist_val, batch_size=args.batch_size)
|
|
|
|
test_loader = DataLoader(mnist_test, batch_size=args.batch_size)
|
|
|
|
|
|
|
|
# ------------
|
|
|
|
# model
|
|
|
|
# ------------
|
|
|
|
model = LitClassifier(Backbone(hidden_dim=args.hidden_dim), args.learning_rate)
|
|
|
|
|
|
|
|
# ------------
|
|
|
|
# training
|
|
|
|
# ------------
|
|
|
|
trainer = pl.Trainer.from_argparse_args(args)
|
|
|
|
trainer.fit(model, train_loader, val_loader)
|
|
|
|
|
|
|
|
# ------------
|
|
|
|
# testing
|
|
|
|
# ------------
|
2020-10-02 23:28:50 +00:00
|
|
|
result = trainer.test(test_dataloaders=test_loader)
|
|
|
|
print(result)
|
2020-09-23 04:19:46 +00:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
cli_main()
|