lightning/tests/tests_pytorch/strategies/test_single_device.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

136 lines
4.6 KiB
Python
Raw Normal View History

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pickle
from unittest.mock import MagicMock, Mock
import pytest
import torch
from lightning.pytorch import Trainer
from lightning.pytorch.core.optimizer import LightningOptimizer
from lightning.pytorch.demos.boring_classes import BoringModel, RandomDataset
from lightning.pytorch.strategies import SingleDeviceStrategy
ruff: replace isort with ruff +TPU (#17684) * ruff: replace isort with ruff * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixing & imports * lines in warning test * docs * fix enum import * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixing * import * fix lines * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * type ClusterEnvironment * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-09-26 15:54:55 +00:00
from torch.utils.data import DataLoader
from tests_pytorch.helpers.dataloaders import CustomNotImplementedErrorDataloader
from tests_pytorch.helpers.runif import RunIf
def test_single_cpu():
"""Tests if device is set correctly for single CPU strategy."""
2023-07-13 10:01:58 +00:00
trainer = Trainer(accelerator="cpu")
assert isinstance(trainer.strategy, SingleDeviceStrategy)
assert trainer.strategy.root_device == torch.device("cpu")
class BoringModelGPU(BoringModel):
def on_train_start(self) -> None:
# make sure that the model is on GPU when training
assert self.device == torch.device("cuda:0")
self.start_cuda_memory = torch.cuda.memory_allocated()
@RunIf(min_cuda_gpus=1, skip_windows=True)
def test_single_gpu():
"""Tests if device is set correctly when training and after teardown for single GPU strategy.
Cannot run this test on MPS due to shared memory not allowing dedicated measurements of GPU memory utilization.
"""
trainer = Trainer(accelerator="gpu", devices=1, fast_dev_run=True)
# assert training strategy attributes for device setting
assert isinstance(trainer.strategy, SingleDeviceStrategy)
assert trainer.strategy.root_device == torch.device("cuda:0")
model = BoringModelGPU()
trainer.fit(model)
# assert after training, model is moved to CPU and memory is deallocated
assert model.device == torch.device("cpu")
cuda_memory = torch.cuda.memory_allocated()
assert cuda_memory < model.start_cuda_memory
class MockOptimizer:
...
def test_strategy_pickle():
strategy = SingleDeviceStrategy("cpu")
optimizer = MockOptimizer()
strategy.optimizers = [optimizer]
assert isinstance(strategy.optimizers[0], MockOptimizer)
assert isinstance(strategy._lightning_optimizers[0], LightningOptimizer)
state = pickle.dumps(strategy)
# dumping did not get rid of the lightning optimizers
assert isinstance(strategy._lightning_optimizers[0], LightningOptimizer)
strategy_reloaded = pickle.loads(state)
# loading restores the lightning optimizers
assert isinstance(strategy_reloaded._lightning_optimizers[0], LightningOptimizer)
class BoringModelNoDataloaders(BoringModel):
def train_dataloader(self):
raise NotImplementedError
def val_dataloader(self):
raise NotImplementedError
def test_dataloader(self):
raise NotImplementedError
def predict_dataloader(self):
raise NotImplementedError
_loader = DataLoader(RandomDataset(32, 64))
_loader_no_len = CustomNotImplementedErrorDataloader(_loader)
@pytest.mark.parametrize(
("keyword", "value"),
2023-05-05 06:25:15 +00:00
[
("train_dataloaders", _loader_no_len),
("val_dataloaders", _loader_no_len),
("test_dataloaders", _loader_no_len),
("predict_dataloaders", _loader_no_len),
("val_dataloaders", [_loader, _loader_no_len]),
2023-05-05 06:25:15 +00:00
],
)
def test_process_dataloader_gets_called_as_expected(keyword, value, monkeypatch):
trainer = Trainer()
model = BoringModelNoDataloaders()
strategy = SingleDeviceStrategy(accelerator=Mock())
strategy.connect(model)
trainer._accelerator_connector.strategy = strategy
process_dataloader_mock = MagicMock()
monkeypatch.setattr(strategy, "process_dataloader", process_dataloader_mock)
if "train" in keyword:
fn = trainer.fit_loop.setup_data
elif "val" in keyword:
fn = trainer.validate_loop.setup_data
elif "test" in keyword:
fn = trainer.test_loop.setup_data
else:
fn = trainer.predict_loop.setup_data
trainer._data_connector.attach_dataloaders(model, **{keyword: value})
fn()
expected = len(value) if isinstance(value, list) else 1
assert process_dataloader_mock.call_count == expected