lightning/tests/tests_pytorch/strategies/test_ddp_integration.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

457 lines
16 KiB
Python
Raw Normal View History

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2023-10-06 11:17:03 +00:00
import operator
import os
2023-10-06 11:17:03 +00:00
import sys
from unittest import mock
from unittest.mock import Mock
ruff: replace isort with ruff +TPU (#17684) * ruff: replace isort with ruff * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixing & imports * lines in warning test * docs * fix enum import * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixing * import * fix lines * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * type ClusterEnvironment * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-09-26 15:54:55 +00:00
import lightning.pytorch as pl
import pytest
import torch
from lightning.fabric.plugins.environments import ClusterEnvironment, LightningEnvironment
from lightning.fabric.utilities.distributed import _distributed_is_initialized
2023-10-06 11:17:03 +00:00
from lightning.fabric.utilities.imports import _IS_WINDOWS, _TORCH_GREATER_EQUAL_2_0
from lightning.pytorch import Trainer
from lightning.pytorch.callbacks import Callback, EarlyStopping
from lightning.pytorch.demos.boring_classes import BoringDataModule, BoringModel
from lightning.pytorch.strategies import DDPStrategy
from lightning.pytorch.strategies.launchers import _SubprocessScriptLauncher
from lightning.pytorch.strategies.launchers.multiprocessing import _MultiProcessingLauncher
from lightning.pytorch.trainer import seed_everything
2023-10-06 11:17:03 +00:00
from lightning_utilities import compare_version
ruff: replace isort with ruff +TPU (#17684) * ruff: replace isort with ruff * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixing & imports * lines in warning test * docs * fix enum import * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixing * import * fix lines * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * type ClusterEnvironment * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-09-26 15:54:55 +00:00
from torch.distributed.optim import ZeroRedundancyOptimizer
from torch.multiprocessing import ProcessRaisedException
from torch.nn.parallel.distributed import DistributedDataParallel
import tests_pytorch.helpers.pipelines as tpipes
from tests_pytorch.helpers.datamodules import ClassifDataModule
from tests_pytorch.helpers.runif import RunIf
from tests_pytorch.helpers.simple_models import ClassificationModel
@RunIf(min_cuda_gpus=2, standalone=True, sklearn=True)
def test_multi_gpu_model_ddp_fit_only(tmpdir):
dm = ClassifDataModule()
model = ClassificationModel()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp")
trainer.fit(model, datamodule=dm)
@RunIf(min_cuda_gpus=2, standalone=True, sklearn=True)
def test_multi_gpu_model_ddp_test_only(tmpdir):
dm = ClassifDataModule()
model = ClassificationModel()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp")
trainer.test(model, datamodule=dm)
@RunIf(min_cuda_gpus=2, standalone=True, sklearn=True)
def test_multi_gpu_model_ddp_fit_test(tmpdir):
seed_everything(4321)
dm = ClassifDataModule()
model = ClassificationModel()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp")
trainer.fit(model, datamodule=dm)
result = trainer.test(model, datamodule=dm)
for out in result:
assert out["test_acc"] > 0.7
@RunIf(skip_windows=True)
@mock.patch("torch.cuda.set_device")
@mock.patch("lightning.pytorch.accelerators.cuda._check_cuda_matmul_precision")
@mock.patch("lightning.pytorch.accelerators.cuda._clear_cuda_memory")
def test_ddp_torch_dist_is_available_in_setup(_, __, ___, cuda_count_1, mps_count_0, tmpdir):
"""Test to ensure torch distributed is available within the setup hook using ddp."""
class TestModel(BoringModel):
def setup(self, stage: str) -> None:
assert _distributed_is_initialized()
raise SystemExit()
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
strategy=DDPStrategy(process_group_backend="gloo"),
accelerator="gpu",
devices=1,
)
with pytest.raises(SystemExit):
trainer.fit(model)
@RunIf(min_cuda_gpus=2, standalone=True)
@pytest.mark.parametrize("precision", ["16-mixed", "32-true"])
def test_ddp_wrapper(tmpdir, precision):
"""Test parameters to ignore are carried over for DDP."""
class WeirdModule(torch.nn.Module):
def _save_to_state_dict(self, destination, prefix, keep_vars):
return {"something": "something"}
class CustomModel(BoringModel):
def __init__(self):
super().__init__()
self.weird_module = WeirdModule()
# should be skipped
self._ddp_params_and_buffers_to_ignore = ["something"]
class CustomCallback(Callback):
def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
assert isinstance(trainer.strategy.model, DistributedDataParallel)
expected = ["something"]
assert (
trainer.strategy.model.parameters_to_ignore == set(expected) if _TORCH_GREATER_EQUAL_2_0 else expected
)
assert trainer.strategy.model.module._ddp_params_and_buffers_to_ignore == expected
model = CustomModel()
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
precision=precision,
strategy="ddp",
accelerator="gpu",
devices=2,
callbacks=CustomCallback(),
enable_progress_bar=False,
enable_model_summary=False,
)
trainer.fit(model)
@RunIf(min_cuda_gpus=2, sklearn=True)
def test_multi_gpu_early_stop_ddp_spawn(tmpdir):
seed_everything(42)
trainer_options = {
"default_root_dir": tmpdir,
"callbacks": [EarlyStopping(monitor="train_acc")],
"max_epochs": 50,
"limit_train_batches": 10,
"limit_val_batches": 10,
"accelerator": "gpu",
"devices": [0, 1],
"strategy": "ddp_spawn",
}
dm = ClassifDataModule()
model = ClassificationModel()
tpipes.run_model_test(trainer_options, model, dm)
@RunIf(min_cuda_gpus=2)
def test_multi_gpu_model_ddp_spawn(tmpdir):
seed_everything(42)
trainer_options = {
"default_root_dir": tmpdir,
"max_epochs": 1,
"limit_train_batches": 10,
"limit_val_batches": 10,
"accelerator": "gpu",
"devices": [0, 1],
"strategy": "ddp_spawn",
"enable_progress_bar": False,
}
model = BoringModel()
tpipes.run_model_test(trainer_options, model)
@RunIf(min_cuda_gpus=2)
def test_ddp_all_dataloaders_passed_to_fit(tmpdir):
"""Make sure DDP works with dataloaders passed to fit()"""
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
enable_progress_bar=False,
max_epochs=1,
limit_train_batches=0.2,
limit_val_batches=0.2,
accelerator="gpu",
devices=[0, 1],
strategy="ddp_spawn",
)
trainer.fit(model, train_dataloaders=model.train_dataloader(), val_dataloaders=model.val_dataloader())
assert trainer.state.finished, "DDP doesn't work with dataloaders passed to fit()."
class UnusedParametersModel(BoringModel):
def __init__(self):
super().__init__()
self.intermediate_layer = torch.nn.Linear(32, 32)
def training_step(self, batch, batch_idx):
with torch.no_grad():
batch = self.intermediate_layer(batch)
return super().training_step(batch, batch_idx)
2023-10-06 11:17:03 +00:00
@pytest.mark.skipif(
# TODO: investigate threading issue in this configuration
_IS_WINDOWS
and (sys.version_info.major, sys.version_info.minor) == (3, 11)
and compare_version("torch", operator.eq, "2.1.0", use_base_version=True),
reason="threading issue",
)
def test_find_unused_parameters_exception():
"""Test that the DDP strategy can change PyTorch's error message so that it's more useful for Lightning users."""
trainer = Trainer(accelerator="cpu", devices=1, strategy="ddp_spawn", max_steps=2)
with pytest.raises(
ProcessRaisedException, match="It looks like your LightningModule has parameters that were not used in"
):
trainer.fit(UnusedParametersModel())
trainer = Trainer(accelerator="cpu", devices=1, strategy="ddp", max_steps=2)
with pytest.raises(RuntimeError, match="It looks like your LightningModule has parameters that were not used in"):
trainer.fit(UnusedParametersModel())
class BoringCallbackDDPSpawnModel(BoringModel):
def __init__(self, name: str, val: float):
super().__init__()
self.name = name
self.val = val
def validation_step(self, batch, batch_idx):
self.log(self.name, self.val)
return super().validation_step(batch, batch_idx)
class CustomMultiProcessingLauncher(_MultiProcessingLauncher):
def get_extra_results(self, trainer):
extra = super().get_extra_results(trainer)
extra["test_val"] = "test_val"
return extra
def update_main_process_results(self, trainer, extra) -> None:
trainer.strategy.test_val = extra.pop("test_val")
return super().update_main_process_results(trainer, extra)
class TestDDPSpawnStrategy(DDPStrategy):
def _configure_launcher(self):
self._launcher = CustomMultiProcessingLauncher(self)
@RunIf(skip_windows=True)
def test_ddp_spawn_add_get_queue(tmpdir):
"""Tests get_extra_results/update_main_process_results with DDPSpawnStrategy."""
ddp_spawn_strategy = TestDDPSpawnStrategy()
trainer = Trainer(
default_root_dir=tmpdir, fast_dev_run=True, accelerator="cpu", devices=2, strategy=ddp_spawn_strategy
)
val: float = 1.0
val_name: str = "val_acc"
model = BoringCallbackDDPSpawnModel(val_name, val)
dm = BoringDataModule()
trainer.fit(model, datamodule=dm)
assert trainer.callback_metrics[val_name] == torch.tensor(val)
assert ddp_spawn_strategy.test_val == "test_val"
class BoringModelDDPCPU(BoringModel):
def on_train_start(self) -> None:
# make sure that the model is on CPU when training
assert self.device == torch.device("cpu")
@RunIf(skip_windows=True)
def test_ddp_cpu():
"""Tests if device is set correctly when training for DDPStrategy."""
trainer = Trainer(devices=2, strategy="ddp_spawn", accelerator="cpu", fast_dev_run=True)
# assert strategy attributes for device setting
assert isinstance(trainer.strategy, DDPStrategy)
assert trainer.strategy.root_device == torch.device("cpu")
model = BoringModelDDPCPU()
trainer.fit(model)
class BoringZeroRedundancyOptimizerModel(BoringModel):
def configure_optimizers(self):
return ZeroRedundancyOptimizer(self.layer.parameters(), optimizer_class=torch.optim.Adam, lr=0.1)
@RunIf(min_cuda_gpus=2, skip_windows=True)
@pytest.mark.parametrize("strategy", [pytest.param("ddp", marks=RunIf(standalone=True)), "ddp_spawn"])
def test_ddp_strategy_checkpoint_zero_redundancy_optimizer(tmpdir, strategy):
"""Test to ensure that checkpoint is saved correctly when using zero redundancy optimizer."""
model = BoringZeroRedundancyOptimizerModel()
trainer = Trainer(accelerator="gpu", devices=2, strategy=strategy, max_steps=1)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, "model.pt")
# need to broadcast because tmpdir is different on each process
checkpoint_path = trainer.strategy.broadcast(checkpoint_path)
trainer.save_checkpoint(checkpoint_path)
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
# Assert model parameters are identical after loading
for trained_param, loaded_param in zip(model.parameters(), saved_model.parameters()):
assert torch.equal(trained_param.to("cpu"), loaded_param)
def test_configure_launcher_create_processes_externally():
class MyClusterEnvironment(ClusterEnvironment):
@property
def creates_processes_externally(self):
return True
@property
def main_address(self):
return ""
@property
def main_port(self):
return 8080
@staticmethod
def detect():
return True
def world_size(self):
return 1
def set_world_size(self):
pass
def global_rank(self):
return 0
def set_global_rank(self):
pass
def local_rank(self):
return 0
def node_rank(self):
return 0
ddp_strategy = DDPStrategy(cluster_environment=MyClusterEnvironment(), parallel_devices=[torch.device("cpu")])
assert ddp_strategy.launcher is None
ddp_strategy._configure_launcher()
assert isinstance(ddp_strategy.launcher, _SubprocessScriptLauncher)
ddp_strategy.launcher._call_children_scripts = Mock()
launch_fn = Mock()
ddp_strategy.launcher.launch(launch_fn)
ddp_strategy.launcher._call_children_scripts.assert_not_called()
launch_fn.assert_called_once()
class CheckOptimizerDeviceModel(BoringModel):
def configure_optimizers(self):
assert all(param.device.type == "cuda" for param in self.parameters())
super().configure_optimizers()
@RunIf(min_cuda_gpus=1)
@pytest.mark.parametrize("strategy", ["ddp", "ddp_spawn"])
def test_model_parameters_on_device_for_optimizer(strategy):
"""Test that the strategy has moved the parameters to the device by the time the optimizer gets created."""
model = CheckOptimizerDeviceModel()
trainer = Trainer(
default_root_dir=os.getcwd(),
fast_dev_run=1,
accelerator="gpu",
devices=1,
strategy=strategy,
)
trainer.fit(model)
class BoringModelGPU(BoringModel):
def on_train_start(self) -> None:
# make sure that the model is on GPU when training
assert self.device == torch.device(f"cuda:{self.trainer.strategy.local_rank}")
self.start_cuda_memory = torch.cuda.memory_allocated()
@RunIf(min_cuda_gpus=2, skip_windows=True, standalone=True)
def test_ddp_with_2_gpus():
"""Tests if device is set correctly when training and after teardown for DDPStrategy."""
trainer = Trainer(
accelerator="gpu",
devices=2,
strategy="ddp",
fast_dev_run=True,
enable_progress_bar=False,
enable_model_summary=False,
)
# assert strategy attributes for device setting
assert isinstance(trainer.strategy, DDPStrategy)
local_rank = trainer.strategy.local_rank
assert trainer.strategy.root_device == torch.device(f"cuda:{local_rank}")
model = BoringModelGPU()
trainer.fit(model)
# assert after training, model is moved to CPU and memory is deallocated
assert model.device == torch.device("cpu")
cuda_memory = torch.cuda.memory_allocated()
assert cuda_memory < model.start_cuda_memory
@RunIf(min_cuda_gpus=4, standalone=True)
@mock.patch("torch.distributed.barrier")
def test_ddp_barrier_non_consecutive_device_ids(barrier_mock, tmpdir):
"""Test correct usage of barriers when device ids do not start at 0 or are not consecutive."""
model = BoringModel()
gpus = [1, 3]
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=1,
accelerator="gpu",
devices=gpus,
strategy="ddp",
enable_progress_bar=False,
enable_model_summary=False,
)
trainer.fit(model)
barrier_mock.assert_any_call(device_ids=[gpus[trainer.local_rank]])
@mock.patch.dict(os.environ, {"LOCAL_RANK": "1"})
def test_incorrect_ddp_script_spawning(tmpdir):
"""Test an error message when user accidentally instructs Lightning to spawn children processes on rank > 0."""
class WronglyImplementedEnvironment(LightningEnvironment):
@property
def creates_processes_externally(self):
# returning false no matter what means Lightning would spawn also on ranks > 0 new processes
return False
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
strategy="ddp",
accelerator="cpu",
devices=2,
plugins=[WronglyImplementedEnvironment()],
)
with pytest.raises(
RuntimeError, match="Lightning attempted to launch new distributed processes with `local_rank > 0`."
):
trainer.fit(model)