2023-10-09 15:06:32 +00:00
|
|
|
# Copyright The Lightning AI team.
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2023-11-05 10:28:18 +00:00
|
|
|
import json
|
2023-10-09 15:06:32 +00:00
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
from lightning import seed_everything
|
2023-10-16 13:33:50 +00:00
|
|
|
from lightning.data.streaming import Cache
|
|
|
|
from lightning.data.streaming.dataloader import StreamingDataLoader
|
2023-10-23 17:06:48 +00:00
|
|
|
from lightning.data.streaming.dataset import StreamingDataset
|
2023-11-16 23:06:58 +00:00
|
|
|
from lightning.data.streaming.item_loader import TokensLoader
|
2023-11-09 18:37:37 +00:00
|
|
|
from lightning.data.streaming.serializers import Serializer
|
2023-11-16 21:08:15 +00:00
|
|
|
from lightning.data.utilities.env import _DistributedEnv
|
2023-10-09 15:06:32 +00:00
|
|
|
from lightning.fabric import Fabric
|
2023-10-19 12:41:35 +00:00
|
|
|
from lightning.pytorch.demos.boring_classes import RandomDataset
|
2023-10-09 15:06:32 +00:00
|
|
|
from lightning_utilities.core.imports import RequirementCache
|
2023-11-05 10:28:18 +00:00
|
|
|
from lightning_utilities.test.warning import no_warning_call
|
2023-11-07 15:19:03 +00:00
|
|
|
from torch.utils.data import Dataset
|
2023-10-09 15:06:32 +00:00
|
|
|
|
|
|
|
_PIL_AVAILABLE = RequirementCache("PIL")
|
|
|
|
_TORCH_VISION_AVAILABLE = RequirementCache("torchvision")
|
|
|
|
|
|
|
|
|
|
|
|
class ImageDataset(Dataset):
|
|
|
|
def __init__(self, tmpdir, cache, size, num_classes):
|
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
self.data = []
|
|
|
|
self.cache = cache
|
|
|
|
|
|
|
|
seed_everything(42)
|
|
|
|
|
|
|
|
for i in range(size):
|
|
|
|
path = os.path.join(tmpdir, f"img{i}.jpeg")
|
|
|
|
np_data = np.random.randint(255, size=(28, 28), dtype=np.uint8)
|
|
|
|
img = Image.fromarray(np_data).convert("L")
|
|
|
|
img.save(path, format="jpeg", quality=100)
|
|
|
|
self.data.append({"image": path, "class": np.random.randint(num_classes)})
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return len(self.data)
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
if self.cache.filled:
|
|
|
|
return self.cache[index]
|
|
|
|
self.cache[index] = {**self.data[index], "index": index}
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
def _cache_for_image_dataset(num_workers, tmpdir, fabric=None):
|
|
|
|
from PIL import Image
|
|
|
|
from torchvision.transforms import PILToTensor
|
|
|
|
|
|
|
|
dataset_size = 85
|
|
|
|
|
|
|
|
cache_dir = os.path.join(tmpdir, "cache")
|
|
|
|
distributed_env = _DistributedEnv.detect()
|
|
|
|
|
|
|
|
cache = Cache(cache_dir, chunk_size=10)
|
|
|
|
dataset = ImageDataset(tmpdir, cache, dataset_size, 10)
|
2023-10-16 13:33:50 +00:00
|
|
|
dataloader = StreamingDataLoader(dataset, num_workers=num_workers, batch_size=4)
|
2023-10-09 15:06:32 +00:00
|
|
|
|
|
|
|
for _ in dataloader:
|
|
|
|
pass
|
|
|
|
|
|
|
|
# Not strictly required but added to avoid race condition
|
|
|
|
if distributed_env.world_size > 1:
|
|
|
|
fabric.barrier()
|
|
|
|
|
|
|
|
assert cache.filled
|
|
|
|
|
|
|
|
for i in range(len(dataset)):
|
|
|
|
cached_data = dataset[i]
|
|
|
|
original_data = dataset.data[i]
|
|
|
|
assert cached_data["class"] == original_data["class"]
|
|
|
|
original_array = PILToTensor()(Image.open(original_data["image"]))
|
|
|
|
assert torch.equal(original_array, cached_data["image"])
|
|
|
|
|
|
|
|
if distributed_env.world_size == 1:
|
|
|
|
indexes = []
|
2023-10-16 13:33:50 +00:00
|
|
|
dataloader = StreamingDataLoader(dataset, num_workers=num_workers, batch_size=4)
|
2023-10-09 15:06:32 +00:00
|
|
|
for batch in dataloader:
|
|
|
|
if batch:
|
|
|
|
indexes.extend(batch["index"].numpy().tolist())
|
|
|
|
assert len(indexes) == dataset_size
|
|
|
|
|
|
|
|
seed_everything(42)
|
|
|
|
|
2023-10-16 13:33:50 +00:00
|
|
|
dataloader = StreamingDataLoader(dataset, num_workers=num_workers, batch_size=4, shuffle=True)
|
2023-10-09 15:06:32 +00:00
|
|
|
dataloader_iter = iter(dataloader)
|
|
|
|
|
|
|
|
indexes = []
|
|
|
|
for batch in dataloader_iter:
|
|
|
|
indexes.extend(batch["index"].numpy().tolist())
|
|
|
|
|
|
|
|
if distributed_env.world_size == 1:
|
|
|
|
assert len(indexes) == dataset_size
|
|
|
|
|
|
|
|
indexes2 = []
|
|
|
|
for batch in dataloader_iter:
|
|
|
|
indexes2.extend(batch["index"].numpy().tolist())
|
|
|
|
|
|
|
|
assert indexes2 != indexes
|
|
|
|
|
2023-11-03 11:28:55 +00:00
|
|
|
streaming_dataset = StreamingDataset(input_dir=cache_dir)
|
2023-10-23 17:06:48 +00:00
|
|
|
for i in range(len(streaming_dataset)):
|
|
|
|
cached_data = streaming_dataset[i]
|
|
|
|
original_data = dataset.data[i]
|
|
|
|
assert cached_data["class"] == original_data["class"]
|
|
|
|
original_array = PILToTensor()(Image.open(original_data["image"]))
|
|
|
|
assert torch.equal(original_array, cached_data["image"])
|
|
|
|
|
|
|
|
streaming_dataset_iter = iter(streaming_dataset)
|
|
|
|
for _ in streaming_dataset_iter:
|
|
|
|
pass
|
|
|
|
|
2023-10-09 15:06:32 +00:00
|
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
|
|
condition=not _PIL_AVAILABLE or not _TORCH_VISION_AVAILABLE, reason="Requires: ['pil', 'torchvision']"
|
|
|
|
)
|
2023-10-23 17:06:48 +00:00
|
|
|
@pytest.mark.parametrize("num_workers", [0, 1, 2])
|
2023-10-09 15:06:32 +00:00
|
|
|
def test_cache_for_image_dataset(num_workers, tmpdir):
|
|
|
|
cache_dir = os.path.join(tmpdir, "cache")
|
|
|
|
os.makedirs(cache_dir)
|
|
|
|
|
|
|
|
_cache_for_image_dataset(num_workers, tmpdir)
|
|
|
|
|
|
|
|
|
|
|
|
def _fabric_cache_for_image_dataset(fabric, num_workers, tmpdir):
|
|
|
|
_cache_for_image_dataset(num_workers, tmpdir, fabric=fabric)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
|
|
condition=not _PIL_AVAILABLE or not _TORCH_VISION_AVAILABLE or sys.platform == "win32",
|
|
|
|
reason="Requires: ['pil', 'torchvision']",
|
|
|
|
)
|
|
|
|
@pytest.mark.parametrize("num_workers", [2])
|
|
|
|
def test_cache_for_image_dataset_distributed(num_workers, tmpdir):
|
|
|
|
cache_dir = os.path.join(tmpdir, "cache")
|
|
|
|
os.makedirs(cache_dir)
|
|
|
|
|
|
|
|
fabric = Fabric(accelerator="cpu", devices=2, strategy="ddp_spawn")
|
|
|
|
fabric.launch(partial(_fabric_cache_for_image_dataset, num_workers=num_workers, tmpdir=tmpdir))
|
|
|
|
|
|
|
|
|
|
|
|
def test_cache_with_simple_format(tmpdir):
|
|
|
|
cache_dir = os.path.join(tmpdir, "cache1")
|
|
|
|
os.makedirs(cache_dir)
|
|
|
|
|
|
|
|
cache = Cache(cache_dir, chunk_bytes=90)
|
|
|
|
|
2023-10-27 17:19:17 +00:00
|
|
|
# you encode data
|
2023-10-09 15:06:32 +00:00
|
|
|
for i in range(100):
|
|
|
|
cache[i] = i
|
|
|
|
|
2023-10-27 17:19:17 +00:00
|
|
|
# I am done, write the index ...
|
2023-10-09 15:06:32 +00:00
|
|
|
cache.done()
|
|
|
|
cache.merge()
|
|
|
|
|
2023-10-27 17:19:17 +00:00
|
|
|
# please, decode the data for me.
|
2023-10-09 15:06:32 +00:00
|
|
|
for i in range(100):
|
|
|
|
assert i == cache[i]
|
|
|
|
|
|
|
|
cache_dir = os.path.join(tmpdir, "cache2")
|
|
|
|
os.makedirs(cache_dir)
|
|
|
|
|
|
|
|
cache = Cache(cache_dir, chunk_bytes=90)
|
|
|
|
|
|
|
|
for i in range(100):
|
|
|
|
cache[i] = [i, {0: [i + 1]}]
|
|
|
|
|
|
|
|
cache.done()
|
|
|
|
cache.merge()
|
|
|
|
|
|
|
|
for i in range(100):
|
|
|
|
assert [i, {0: [i + 1]}] == cache[i]
|
|
|
|
|
|
|
|
|
|
|
|
def test_cache_with_auto_wrapping(tmpdir):
|
|
|
|
os.makedirs(os.path.join(tmpdir, "cache_1"), exist_ok=True)
|
|
|
|
|
|
|
|
dataset = RandomDataset(64, 64)
|
2023-10-16 13:33:50 +00:00
|
|
|
dataloader = StreamingDataLoader(dataset, cache_dir=os.path.join(tmpdir, "cache_1"), chunk_bytes=2 << 12)
|
2023-10-09 15:06:32 +00:00
|
|
|
for batch in dataloader:
|
|
|
|
assert isinstance(batch, torch.Tensor)
|
|
|
|
assert sorted(os.listdir(os.path.join(tmpdir, "cache_1"))) == [
|
|
|
|
"chunk-0-0.bin",
|
|
|
|
"chunk-0-1.bin",
|
|
|
|
"index.json",
|
|
|
|
]
|
|
|
|
# Your dataset is optimised for the cloud
|
|
|
|
|
|
|
|
class RandomDatasetAtRuntime(Dataset):
|
|
|
|
def __init__(self, size: int, length: int):
|
|
|
|
self.len = length
|
|
|
|
self.size = size
|
|
|
|
|
|
|
|
def __getitem__(self, index: int) -> torch.Tensor:
|
2023-10-19 12:41:35 +00:00
|
|
|
return torch.randn(1, self.size)
|
2023-10-09 15:06:32 +00:00
|
|
|
|
|
|
|
def __len__(self) -> int:
|
|
|
|
return self.len
|
|
|
|
|
|
|
|
os.makedirs(os.path.join(tmpdir, "cache_2"), exist_ok=True)
|
|
|
|
dataset = RandomDatasetAtRuntime(64, 64)
|
2023-10-16 13:33:50 +00:00
|
|
|
dataloader = StreamingDataLoader(dataset, cache_dir=os.path.join(tmpdir, "cache_2"), chunk_bytes=2 << 12)
|
2023-10-09 15:06:32 +00:00
|
|
|
with pytest.raises(ValueError, match="Your dataset items aren't deterministic"):
|
|
|
|
for batch in dataloader:
|
|
|
|
pass
|
2023-10-16 13:33:50 +00:00
|
|
|
|
|
|
|
|
2023-11-05 10:28:18 +00:00
|
|
|
def test_create_oversized_chunk_single_item(tmp_path):
|
|
|
|
cache = Cache(str(tmp_path), chunk_bytes=700)
|
|
|
|
with pytest.warns(UserWarning, match="An item was larger than the target chunk size"):
|
|
|
|
cache[0] = np.random.randint(0, 10, size=(10000,), dtype=np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
def test_create_undersized_and_oversized_chunk(tmp_path):
|
|
|
|
cache = Cache(str(tmp_path), chunk_bytes=9000) # target: 9KB chunks
|
|
|
|
with no_warning_call(UserWarning):
|
|
|
|
cache[0] = np.random.randint(0, 10, size=(500,), dtype=np.uint8) # will result in undersized chunk
|
|
|
|
cache[1] = np.random.randint(0, 10, size=(10000,), dtype=np.uint8) # will result in oversized chunk
|
|
|
|
with pytest.warns(UserWarning, match="An item was larger than the target chunk size"):
|
|
|
|
cache[2] = np.random.randint(0, 10, size=(150,), dtype=np.uint8)
|
|
|
|
with no_warning_call(UserWarning):
|
|
|
|
cache[3] = np.random.randint(0, 10, size=(200,), dtype=np.uint8)
|
|
|
|
|
|
|
|
cache.done()
|
|
|
|
cache.merge()
|
|
|
|
|
|
|
|
assert len(os.listdir(tmp_path)) == 4 # 3 chunks + 1 index file
|
|
|
|
with open(tmp_path / "index.json") as file:
|
|
|
|
index = json.load(file)
|
|
|
|
|
|
|
|
chunks = index["chunks"]
|
|
|
|
assert chunks[0]["chunk_size"] == 1
|
|
|
|
assert chunks[0]["filename"] == "chunk-0-0.bin"
|
|
|
|
assert chunks[1]["chunk_size"] == 1
|
|
|
|
assert chunks[1]["filename"] == "chunk-0-1.bin"
|
|
|
|
assert chunks[2]["chunk_size"] == 2
|
|
|
|
assert chunks[2]["filename"] == "chunk-0-2.bin"
|
2023-11-09 18:37:37 +00:00
|
|
|
|
|
|
|
|
|
|
|
class CustomData:
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class CustomSerializer(Serializer):
|
|
|
|
def serialize(self, data):
|
|
|
|
return np.array([1]).tobytes(), None
|
|
|
|
|
|
|
|
def deserialize(self, data: bytes):
|
|
|
|
return data
|
|
|
|
|
|
|
|
def can_serialize(self, data) -> bool:
|
|
|
|
return isinstance(data, CustomData)
|
|
|
|
|
|
|
|
|
|
|
|
def test_custom_serializer(tmpdir):
|
|
|
|
cache = Cache(input_dir=str(tmpdir), serializers={"custom": CustomSerializer()}, chunk_size=1)
|
|
|
|
for i in range(10):
|
|
|
|
cache[i] = (CustomData(),)
|
|
|
|
cache.done()
|
|
|
|
cache.merge()
|
|
|
|
assert isinstance(cache[0][0], bytes)
|
2023-11-16 23:06:58 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_cache_for_text_tokens(tmpdir):
|
|
|
|
seed_everything(42)
|
|
|
|
|
|
|
|
block_size = 1024 + 1
|
|
|
|
cache = Cache(input_dir=str(tmpdir), chunk_size=block_size * 11, item_loader=TokensLoader(block_size))
|
|
|
|
text_idxs_list = []
|
|
|
|
|
|
|
|
counter = 0
|
|
|
|
while True:
|
|
|
|
text_ids = torch.randint(0, 1000, (np.random.randint(0, 1000),)).to(torch.int)
|
|
|
|
text_idxs_list.append(text_ids)
|
|
|
|
chunk_filepath = cache._add_item(counter, text_ids)
|
|
|
|
if chunk_filepath:
|
|
|
|
break
|
|
|
|
counter += 1
|
|
|
|
|
|
|
|
cache.done()
|
|
|
|
cache.merge()
|
|
|
|
|
|
|
|
assert len(cache) == 10
|
|
|
|
|
|
|
|
cache_0 = cache[0]
|
|
|
|
cache_1 = cache[1]
|
|
|
|
assert len(cache_0) == block_size
|
|
|
|
assert len(cache_1) == block_size
|
|
|
|
assert not torch.equal(cache_0, cache[1])
|
|
|
|
indices = torch.cat(text_idxs_list, dim=0)
|
|
|
|
assert torch.equal(cache_0, indices[: len(cache_0)])
|
|
|
|
assert torch.equal(cache_1, indices[len(cache_0) : len(cache_0) + len(cache_1)])
|
|
|
|
|
|
|
|
with pytest.raises(ValueError, match="TokensLoader"):
|
|
|
|
len(Cache(str(tmpdir), chunk_size=block_size * 11))
|