lightning/pytorch_lightning/loops/fit_loop.py

265 lines
11 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Optional
from pytorch_lightning.loops import Loop
from pytorch_lightning.loops.epoch import TrainingEpochLoop
from pytorch_lightning.trainer.connectors.logger_connector.result import ResultCollection
Add progress tracking on Loops - 2/n (#8362) * resolve issues * update * update * update * add more exceptions * resolve bug * update * update * update changelog * resolve bug * resolve comments * update * update * update changelog * update * update * remove space * update * add progress tracking to loops * validate json * update * convert to dict for better readability * validate reload * update * update * update on comments * remove deadcode * clean changelog * clean changelog * update * update on comments * CHANGELOG * CHANGELOG * Update pytorch_lightning/loops/base.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * whitespace suggestions * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * make fault_tolerant_enabled protected * whitespace fixes around Args * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * typo it's -> its * fix copy-paste typo in progress docstring * Delete classes * Minor change * docs * protected get_loops_state * merge restore_loops with restore_progress * Fix tests after removals * explicit save with trainer.save_checkpoint() * handle optimization restart based on optimizer_idx * update increments * update val batch progress and remove iteration count * update progress tracking for dataloader loops * remove self.dataloader_idx from eval_epoch_loop * add batch progress to predict loop * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * incorporate progress tracking for current_epoch * Fix test * Actually remove it * Remove unused TrainingEpochProgress * Fix optimization progress - missing scheduler * Restarting changes * Scheduler progress * Unused property, reset on epoch * Resolve FIXME * Remove FIXME * fix test_progress (wip) * fix batch_progress.current.reset * Hold off on split progress. Out of scope of this PR * Unnecessary if * fix structure in test_progress * structure * clean up unused variables in test_progress * refactor naming and organization in test_progress * Unnecessary variable * Remove unnecessary diff * Improve comment * Undo typing change to avoid polluting everything with mypy fixes * Fix and improve test_loops.py * Fix and organize `test_loop_state_dict` * Remove unnecessary checks in test * Update test after disallowing updates on None attributes * Typing * Minor test cleanup * Fix and move loop test * Move test from progress to loops * Reset the scheduler progress * SchedulerProgress fix * Consistent whitespace * Fix final test * Minor test changes * One test to rule them all * Formatting * Rename and clean variables * Shorter names * Shorter scheduler name * Fix optimizer step calculation for stop_batch=2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove empty connects * Update CHANGELOG * Holy shit finally got the formula right * Fix final thing!!! * Do not check state dicts * parametrize multiple_dataloader progress test * Update CHANGELOG.md Co-authored-by: Carlos Mocholi <carlossmocholi@gmail.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Justus Schock <justus.schock@posteo.de>
2021-07-19 08:31:45 +00:00
from pytorch_lightning.trainer.progress import Progress
from pytorch_lightning.trainer.supporters import TensorRunningAccum
from pytorch_lightning.utilities.exceptions import MisconfigurationException
log = logging.getLogger(__name__)
class FitLoop(Loop):
"""This Loop iterates over the epochs to run the training.
Args:
min_epochs: The minimum number of epochs
max_epochs: The maximum number of epochs
"""
def __init__(self, min_epochs: Optional[int] = None, max_epochs: Optional[int] = None):
super().__init__()
# Allow max_epochs or max_steps to be zero, since this will be handled by fit_loop.done
if max_epochs and max_epochs < -1:
raise MisconfigurationException(
f"`max_epochs` must be a positive integer or -1. You passed in {max_epochs}."
)
self.max_epochs = max_epochs
self.min_epochs = min_epochs
self.epoch_loop: Optional[TrainingEpochLoop] = None
Add progress tracking on Loops - 2/n (#8362) * resolve issues * update * update * update * add more exceptions * resolve bug * update * update * update changelog * resolve bug * resolve comments * update * update * update changelog * update * update * remove space * update * add progress tracking to loops * validate json * update * convert to dict for better readability * validate reload * update * update * update on comments * remove deadcode * clean changelog * clean changelog * update * update on comments * CHANGELOG * CHANGELOG * Update pytorch_lightning/loops/base.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * whitespace suggestions * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * make fault_tolerant_enabled protected * whitespace fixes around Args * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * typo it's -> its * fix copy-paste typo in progress docstring * Delete classes * Minor change * docs * protected get_loops_state * merge restore_loops with restore_progress * Fix tests after removals * explicit save with trainer.save_checkpoint() * handle optimization restart based on optimizer_idx * update increments * update val batch progress and remove iteration count * update progress tracking for dataloader loops * remove self.dataloader_idx from eval_epoch_loop * add batch progress to predict loop * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * incorporate progress tracking for current_epoch * Fix test * Actually remove it * Remove unused TrainingEpochProgress * Fix optimization progress - missing scheduler * Restarting changes * Scheduler progress * Unused property, reset on epoch * Resolve FIXME * Remove FIXME * fix test_progress (wip) * fix batch_progress.current.reset * Hold off on split progress. Out of scope of this PR * Unnecessary if * fix structure in test_progress * structure * clean up unused variables in test_progress * refactor naming and organization in test_progress * Unnecessary variable * Remove unnecessary diff * Improve comment * Undo typing change to avoid polluting everything with mypy fixes * Fix and improve test_loops.py * Fix and organize `test_loop_state_dict` * Remove unnecessary checks in test * Update test after disallowing updates on None attributes * Typing * Minor test cleanup * Fix and move loop test * Move test from progress to loops * Reset the scheduler progress * SchedulerProgress fix * Consistent whitespace * Fix final test * Minor test changes * One test to rule them all * Formatting * Rename and clean variables * Shorter names * Shorter scheduler name * Fix optimizer step calculation for stop_batch=2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove empty connects * Update CHANGELOG * Holy shit finally got the formula right * Fix final thing!!! * Do not check state dicts * parametrize multiple_dataloader progress test * Update CHANGELOG.md Co-authored-by: Carlos Mocholi <carlossmocholi@gmail.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Justus Schock <justus.schock@posteo.de>
2021-07-19 08:31:45 +00:00
self.epoch_progress = Progress()
self._is_fresh_start_epoch: bool = True
@property
def current_epoch(self) -> int:
"""Return the current epoch."""
Add progress tracking on Loops - 2/n (#8362) * resolve issues * update * update * update * add more exceptions * resolve bug * update * update * update changelog * resolve bug * resolve comments * update * update * update changelog * update * update * remove space * update * add progress tracking to loops * validate json * update * convert to dict for better readability * validate reload * update * update * update on comments * remove deadcode * clean changelog * clean changelog * update * update on comments * CHANGELOG * CHANGELOG * Update pytorch_lightning/loops/base.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * whitespace suggestions * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * make fault_tolerant_enabled protected * whitespace fixes around Args * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * typo it's -> its * fix copy-paste typo in progress docstring * Delete classes * Minor change * docs * protected get_loops_state * merge restore_loops with restore_progress * Fix tests after removals * explicit save with trainer.save_checkpoint() * handle optimization restart based on optimizer_idx * update increments * update val batch progress and remove iteration count * update progress tracking for dataloader loops * remove self.dataloader_idx from eval_epoch_loop * add batch progress to predict loop * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * incorporate progress tracking for current_epoch * Fix test * Actually remove it * Remove unused TrainingEpochProgress * Fix optimization progress - missing scheduler * Restarting changes * Scheduler progress * Unused property, reset on epoch * Resolve FIXME * Remove FIXME * fix test_progress (wip) * fix batch_progress.current.reset * Hold off on split progress. Out of scope of this PR * Unnecessary if * fix structure in test_progress * structure * clean up unused variables in test_progress * refactor naming and organization in test_progress * Unnecessary variable * Remove unnecessary diff * Improve comment * Undo typing change to avoid polluting everything with mypy fixes * Fix and improve test_loops.py * Fix and organize `test_loop_state_dict` * Remove unnecessary checks in test * Update test after disallowing updates on None attributes * Typing * Minor test cleanup * Fix and move loop test * Move test from progress to loops * Reset the scheduler progress * SchedulerProgress fix * Consistent whitespace * Fix final test * Minor test changes * One test to rule them all * Formatting * Rename and clean variables * Shorter names * Shorter scheduler name * Fix optimizer step calculation for stop_batch=2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove empty connects * Update CHANGELOG * Holy shit finally got the formula right * Fix final thing!!! * Do not check state dicts * parametrize multiple_dataloader progress test * Update CHANGELOG.md Co-authored-by: Carlos Mocholi <carlossmocholi@gmail.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Justus Schock <justus.schock@posteo.de>
2021-07-19 08:31:45 +00:00
return self.epoch_progress.current.completed
@current_epoch.setter
def current_epoch(self, value: int) -> None:
"""Setter for the current epoch."""
Add progress tracking on Loops - 2/n (#8362) * resolve issues * update * update * update * add more exceptions * resolve bug * update * update * update changelog * resolve bug * resolve comments * update * update * update changelog * update * update * remove space * update * add progress tracking to loops * validate json * update * convert to dict for better readability * validate reload * update * update * update on comments * remove deadcode * clean changelog * clean changelog * update * update on comments * CHANGELOG * CHANGELOG * Update pytorch_lightning/loops/base.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * whitespace suggestions * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * make fault_tolerant_enabled protected * whitespace fixes around Args * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * typo it's -> its * fix copy-paste typo in progress docstring * Delete classes * Minor change * docs * protected get_loops_state * merge restore_loops with restore_progress * Fix tests after removals * explicit save with trainer.save_checkpoint() * handle optimization restart based on optimizer_idx * update increments * update val batch progress and remove iteration count * update progress tracking for dataloader loops * remove self.dataloader_idx from eval_epoch_loop * add batch progress to predict loop * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * incorporate progress tracking for current_epoch * Fix test * Actually remove it * Remove unused TrainingEpochProgress * Fix optimization progress - missing scheduler * Restarting changes * Scheduler progress * Unused property, reset on epoch * Resolve FIXME * Remove FIXME * fix test_progress (wip) * fix batch_progress.current.reset * Hold off on split progress. Out of scope of this PR * Unnecessary if * fix structure in test_progress * structure * clean up unused variables in test_progress * refactor naming and organization in test_progress * Unnecessary variable * Remove unnecessary diff * Improve comment * Undo typing change to avoid polluting everything with mypy fixes * Fix and improve test_loops.py * Fix and organize `test_loop_state_dict` * Remove unnecessary checks in test * Update test after disallowing updates on None attributes * Typing * Minor test cleanup * Fix and move loop test * Move test from progress to loops * Reset the scheduler progress * SchedulerProgress fix * Consistent whitespace * Fix final test * Minor test changes * One test to rule them all * Formatting * Rename and clean variables * Shorter names * Shorter scheduler name * Fix optimizer step calculation for stop_batch=2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove empty connects * Update CHANGELOG * Holy shit finally got the formula right * Fix final thing!!! * Do not check state dicts * parametrize multiple_dataloader progress test * Update CHANGELOG.md Co-authored-by: Carlos Mocholi <carlossmocholi@gmail.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Justus Schock <justus.schock@posteo.de>
2021-07-19 08:31:45 +00:00
self.epoch_progress.current.completed = value
@property
def global_step(self) -> int:
"""Returns the global step."""
return self.epoch_loop.global_step
@global_step.setter
def global_step(self, value: int) -> None:
"""Sets the global step (forwards to epoch_loop)"""
self.epoch_loop.global_step = value
@property
def total_batch_idx(self) -> int:
"""Returns the current batch index (across epochs)"""
return self.epoch_loop.total_batch_idx
@property
def batch_idx(self) -> int:
"""Returns the current batch index (within this epoch)"""
return self.epoch_loop.batch_idx
@property
def split_idx(self) -> int:
"""Returns the index of the current batch split (within the current batch) for bptt."""
return self.epoch_loop.batch_loop.split_idx
@property
def min_steps(self) -> int:
# TODO(@justusschock): Why aren't we using the attribute in this class?
"""Returns the minimum numnber of steps to run."""
return self.epoch_loop.min_steps
@min_steps.setter
def min_steps(self, value: int) -> None:
"""Sets the minimum number of steps (forwards to epoch_loop)"""
# TODO(@awaelchli): This setter is required by debugging connector (fast dev run), should be avoided
self.epoch_loop.min_steps = value
@property
def max_steps(self) -> int:
"""Returns the maximum number of steps to run."""
return self.epoch_loop.max_steps
@max_steps.setter
def max_steps(self, value: int) -> None:
"""Sets the maximum number of steps (forwards to epoch_loop)"""
# TODO(@awaelchli): This setter is required by debugging connector (fast dev run), should be avoided
if value and value < -1:
raise MisconfigurationException(f"`max_steps` must be a positive integer or -1. You passed in {value}.")
self.epoch_loop.max_steps = value
@property
def running_loss(self) -> TensorRunningAccum:
"""Returns the running loss."""
return self.epoch_loop.batch_loop.running_loss
@property
def _skip_backward(self) -> bool:
"""Determines whether the loop will skip backward during automatic optimization."""
assert self.epoch_loop.batch_loop is not None
assert self.epoch_loop.batch_loop.optimizer_loop is not None
2021-09-02 11:40:05 +00:00
return self.epoch_loop.batch_loop.optimizer_loop._skip_backward
@_skip_backward.setter
def _skip_backward(self, value: bool) -> None:
"""Determines whether the loop will skip backward during automatic optimization."""
assert self.epoch_loop.batch_loop is not None
assert self.epoch_loop.batch_loop.optimizer_loop is not None
2021-09-02 11:40:05 +00:00
self.epoch_loop.batch_loop.optimizer_loop._skip_backward = value
@property
def _results(self) -> ResultCollection:
if self.trainer.training:
return self.epoch_loop._results
if self.trainer.validating:
return self.epoch_loop.val_loop._results
raise RuntimeError("`FitLoop._results` property isn't defined. Accessed outside of scope")
@property
def done(self) -> bool:
"""Evaluates when to leave the loop.
Returns True if trainer.should_stop was set (e.g. by early stopping) or if the maximum number of steps or epochs
is reached.
"""
# TODO(@awaelchli): Move track steps inside training loop and move part of these condition inside training loop
stop_steps = FitLoop._is_max_limit_enabled(self.max_steps) and self.global_step >= self.max_steps
stop_epochs = FitLoop._is_max_limit_enabled(self.max_epochs) and self.current_epoch >= self.max_epochs
should_stop = False
if self.trainer.should_stop:
# early stopping
met_min_epochs = self.current_epoch >= self.min_epochs if self.min_epochs else True
met_min_steps = self.global_step >= self.min_steps if self.min_steps else True
if met_min_epochs and met_min_steps:
should_stop = True
else:
log.info(
"Trainer was signaled to stop but required minimum epochs"
f" ({self.min_epochs}) or minimum steps ({self.min_steps}) has"
" not been met. Training will continue..."
)
self.trainer.should_stop = should_stop
return stop_steps or should_stop or stop_epochs or self.trainer.num_training_batches == 0
@property
def skip(self) -> bool:
"""Whether we should skip the training and immediately return from the call to :meth:`run`."""
# since `trainer.num_training_batches` depends on the `train_dataloader` but that won't be called
# until `on_run_start`, we use `limit_train_batches` instead
return self.done or self.trainer.limit_train_batches == 0
def connect(self, epoch_loop: TrainingEpochLoop):
"""Connects a training epoch loop to this fit loop."""
self.epoch_loop = epoch_loop
def reset(self) -> None:
"""Resets the internal state of this loop."""
if self.restarting:
self.epoch_progress.reset_on_restart()
def on_run_start(self) -> None:
"""Calls the ``on_train_start`` hook."""
# reset train dataloader and val dataloader
self.trainer.reset_train_val_dataloaders(self.trainer.lightning_module)
self._is_fresh_start_epoch = True
self._results.to(device=self.trainer.lightning_module.device)
self.trainer.call_hook("on_train_start")
def on_advance_start(self) -> None:
"""Prepares the dataloader for training and calls the hooks ``on_epoch_start`` and
``on_train_epoch_start``"""
model = self.trainer.lightning_module
# reset train dataloader
if not self._is_fresh_start_epoch and self.trainer._should_reload_dl_epoch:
self.trainer.reset_train_dataloader(model)
self._is_fresh_start_epoch = False
if callable(getattr(self.trainer.train_dataloader.sampler, "set_epoch", None)):
# set seed for distributed sampler (enables shuffling for each epoch)
self.trainer.train_dataloader.sampler.set_epoch(self.current_epoch)
# changing gradient according accumulation_scheduler
self.trainer.accumulation_scheduler.on_train_epoch_start(self.trainer, self.trainer.lightning_module)
# stores accumulated grad fractions per batch
self.epoch_loop.batch_loop.accumulated_loss = TensorRunningAccum(
window_length=self.trainer.accumulate_grad_batches
)
Add progress tracking on Loops - 2/n (#8362) * resolve issues * update * update * update * add more exceptions * resolve bug * update * update * update changelog * resolve bug * resolve comments * update * update * update changelog * update * update * remove space * update * add progress tracking to loops * validate json * update * convert to dict for better readability * validate reload * update * update * update on comments * remove deadcode * clean changelog * clean changelog * update * update on comments * CHANGELOG * CHANGELOG * Update pytorch_lightning/loops/base.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * whitespace suggestions * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * make fault_tolerant_enabled protected * whitespace fixes around Args * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * typo it's -> its * fix copy-paste typo in progress docstring * Delete classes * Minor change * docs * protected get_loops_state * merge restore_loops with restore_progress * Fix tests after removals * explicit save with trainer.save_checkpoint() * handle optimization restart based on optimizer_idx * update increments * update val batch progress and remove iteration count * update progress tracking for dataloader loops * remove self.dataloader_idx from eval_epoch_loop * add batch progress to predict loop * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * incorporate progress tracking for current_epoch * Fix test * Actually remove it * Remove unused TrainingEpochProgress * Fix optimization progress - missing scheduler * Restarting changes * Scheduler progress * Unused property, reset on epoch * Resolve FIXME * Remove FIXME * fix test_progress (wip) * fix batch_progress.current.reset * Hold off on split progress. Out of scope of this PR * Unnecessary if * fix structure in test_progress * structure * clean up unused variables in test_progress * refactor naming and organization in test_progress * Unnecessary variable * Remove unnecessary diff * Improve comment * Undo typing change to avoid polluting everything with mypy fixes * Fix and improve test_loops.py * Fix and organize `test_loop_state_dict` * Remove unnecessary checks in test * Update test after disallowing updates on None attributes * Typing * Minor test cleanup * Fix and move loop test * Move test from progress to loops * Reset the scheduler progress * SchedulerProgress fix * Consistent whitespace * Fix final test * Minor test changes * One test to rule them all * Formatting * Rename and clean variables * Shorter names * Shorter scheduler name * Fix optimizer step calculation for stop_batch=2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove empty connects * Update CHANGELOG * Holy shit finally got the formula right * Fix final thing!!! * Do not check state dicts * parametrize multiple_dataloader progress test * Update CHANGELOG.md Co-authored-by: Carlos Mocholi <carlossmocholi@gmail.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Justus Schock <justus.schock@posteo.de>
2021-07-19 08:31:45 +00:00
self.epoch_progress.increment_ready()
def advance(self) -> None:
"""Runs one whole epoch."""
dataloader = self.trainer.training_type_plugin.process_dataloader(self.trainer.train_dataloader)
data_fetcher = self.trainer._data_connector.get_profiled_dataloader(dataloader)
with self.trainer.profiler.profile("run_training_epoch"):
self.epoch_loop.run(data_fetcher)
# the global step is manually decreased here due to backwards compatibility with existing loggers
# as they expect that the same step is used when logging epoch end metrics even when the batch loop has
# finished. this means the attribute does not exactly track the number of optimizer steps applied.
# TODO(@carmocca): deprecate and rename so users don't get confused
self.global_step -= 1
# log epoch metrics
self.trainer.logger_connector.update_train_epoch_metrics()
self.global_step += 1
def on_advance_end(self) -> None:
Add progress tracking on Loops - 2/n (#8362) * resolve issues * update * update * update * add more exceptions * resolve bug * update * update * update changelog * resolve bug * resolve comments * update * update * update changelog * update * update * remove space * update * add progress tracking to loops * validate json * update * convert to dict for better readability * validate reload * update * update * update on comments * remove deadcode * clean changelog * clean changelog * update * update on comments * CHANGELOG * CHANGELOG * Update pytorch_lightning/loops/base.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * whitespace suggestions * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * make fault_tolerant_enabled protected * whitespace fixes around Args * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * typo it's -> its * fix copy-paste typo in progress docstring * Delete classes * Minor change * docs * protected get_loops_state * merge restore_loops with restore_progress * Fix tests after removals * explicit save with trainer.save_checkpoint() * handle optimization restart based on optimizer_idx * update increments * update val batch progress and remove iteration count * update progress tracking for dataloader loops * remove self.dataloader_idx from eval_epoch_loop * add batch progress to predict loop * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * incorporate progress tracking for current_epoch * Fix test * Actually remove it * Remove unused TrainingEpochProgress * Fix optimization progress - missing scheduler * Restarting changes * Scheduler progress * Unused property, reset on epoch * Resolve FIXME * Remove FIXME * fix test_progress (wip) * fix batch_progress.current.reset * Hold off on split progress. Out of scope of this PR * Unnecessary if * fix structure in test_progress * structure * clean up unused variables in test_progress * refactor naming and organization in test_progress * Unnecessary variable * Remove unnecessary diff * Improve comment * Undo typing change to avoid polluting everything with mypy fixes * Fix and improve test_loops.py * Fix and organize `test_loop_state_dict` * Remove unnecessary checks in test * Update test after disallowing updates on None attributes * Typing * Minor test cleanup * Fix and move loop test * Move test from progress to loops * Reset the scheduler progress * SchedulerProgress fix * Consistent whitespace * Fix final test * Minor test changes * One test to rule them all * Formatting * Rename and clean variables * Shorter names * Shorter scheduler name * Fix optimizer step calculation for stop_batch=2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Remove empty connects * Update CHANGELOG * Holy shit finally got the formula right * Fix final thing!!! * Do not check state dicts * parametrize multiple_dataloader progress test * Update CHANGELOG.md Co-authored-by: Carlos Mocholi <carlossmocholi@gmail.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Justus Schock <justus.schock@posteo.de>
2021-07-19 08:31:45 +00:00
self.epoch_progress.increment_completed()
def on_run_end(self) -> None:
"""Calls the ``on_train_end`` hook."""
# NOTE: the current_epoch is already incremented
# Lightning today does not increment the current epoch at the last epoch run in Trainer.fit
# To simulate that current behavior, we decrement here.
# TODO: must be fixed by https://github.com/PyTorchLightning/pytorch-lightning/issues/5007
self.current_epoch = max(self.current_epoch - 1, 0)
# hook
self.trainer.call_hook("on_train_end")
# give accelerators a chance to finish
self.trainer.training_type_plugin.on_train_end()
def teardown(self) -> None:
self.epoch_loop.teardown()
def _should_accumulate(self) -> bool:
"""Whether the gradients should be accumulated."""
return self.epoch_loop._should_accumulate()
@staticmethod
def _is_max_limit_enabled(max_value: Optional[int]) -> bool:
"""Checks whether the max_value is enabled. This can be used for checking whether max_epochs or max_steps
is enabled.
Args:
max_value: the value to check
Returns:
whether the limit for this value should be enabled
"""
return max_value not in (None, -1)