2020-08-02 12:13:31 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License
|
|
|
|
|
|
|
|
import os
|
2020-08-07 22:33:51 +00:00
|
|
|
|
2020-08-02 12:13:31 +00:00
|
|
|
import torch
|
2020-10-03 13:02:35 +00:00
|
|
|
import torch.distributed as torch_distrib
|
2020-08-02 12:13:31 +00:00
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
2020-08-24 21:50:47 +00:00
|
|
|
from pytorch_lightning.core.step_result import Result
|
2020-10-03 13:02:35 +00:00
|
|
|
from pytorch_lightning.distributed.dist import LightningDistributed
|
|
|
|
from pytorch_lightning import _logger as log
|
|
|
|
from pytorch_lightning.accelerators.base_backend import Accelerator
|
|
|
|
from pytorch_lightning.utilities import AMPType
|
|
|
|
from pytorch_lightning.utilities.distributed import rank_zero_only
|
2020-08-02 12:13:31 +00:00
|
|
|
|
|
|
|
try:
|
|
|
|
from hydra.utils import to_absolute_path, get_original_cwd
|
|
|
|
from hydra.core.hydra_config import HydraConfig
|
|
|
|
except ImportError:
|
|
|
|
HYDRA_AVAILABLE = False
|
|
|
|
else:
|
|
|
|
HYDRA_AVAILABLE = True
|
|
|
|
|
|
|
|
|
2020-10-03 13:02:35 +00:00
|
|
|
class DDP2Backend(Accelerator):
|
2020-08-02 12:13:31 +00:00
|
|
|
|
2020-10-04 12:48:46 +00:00
|
|
|
def __init__(self, trainer, cluster_environment=None):
|
|
|
|
super().__init__(trainer, cluster_environment)
|
2020-08-02 12:13:31 +00:00
|
|
|
self.task_idx = None
|
2020-10-03 13:02:35 +00:00
|
|
|
self.dist = LightningDistributed()
|
2020-08-02 12:13:31 +00:00
|
|
|
|
2020-08-26 23:10:24 +00:00
|
|
|
def setup(self, model):
|
2020-08-02 12:13:31 +00:00
|
|
|
self._resolve_task_idx()
|
2020-08-27 00:03:09 +00:00
|
|
|
self.trainer.model = model
|
|
|
|
|
2020-08-02 12:13:31 +00:00
|
|
|
def _resolve_task_idx(self):
|
|
|
|
if self.trainer.is_slurm_managing_tasks:
|
|
|
|
self.task_idx = int(os.environ['SLURM_LOCALID'])
|
|
|
|
else:
|
|
|
|
# torchelastic or general non_slurm ddp2
|
|
|
|
try:
|
|
|
|
self.task_idx = int(os.environ['LOCAL_RANK'])
|
2020-10-01 19:45:44 +00:00
|
|
|
except Exception as exp:
|
2020-08-02 12:13:31 +00:00
|
|
|
m = 'ddp2 only works in SLURM or via torchelastic with the WORLD_SIZE, LOCAL_RANK, GROUP_RANK flags'
|
2020-10-01 19:45:44 +00:00
|
|
|
raise MisconfigurationException(m) from exp
|
2020-08-02 12:13:31 +00:00
|
|
|
|
2020-08-27 00:03:09 +00:00
|
|
|
def train(self):
|
|
|
|
model = self.trainer.model
|
2020-10-03 13:02:35 +00:00
|
|
|
return self.ddp_train(process_idx=self.task_idx, mp_queue=None, model=model)
|
|
|
|
|
|
|
|
def training_step(self, args):
|
|
|
|
if self.trainer.amp_backend == AMPType.NATIVE:
|
|
|
|
with torch.cuda.amp.autocast():
|
|
|
|
output = self.trainer.model(*args)
|
|
|
|
else:
|
|
|
|
output = self.trainer.model(*args)
|
|
|
|
return output
|
|
|
|
|
|
|
|
def validation_step(self, args):
|
|
|
|
output = self.training_step(args)
|
|
|
|
return output
|
|
|
|
|
|
|
|
def test_step(self, args):
|
|
|
|
output = self.training_step(args)
|
|
|
|
return output
|
|
|
|
|
|
|
|
def barrier(self, name: str = None):
|
|
|
|
if torch_distrib.is_initialized():
|
|
|
|
torch_distrib.barrier()
|
2020-08-24 11:33:14 +00:00
|
|
|
|
2020-08-24 21:50:47 +00:00
|
|
|
def training_step_end(self, output):
|
|
|
|
if isinstance(output, Result):
|
|
|
|
output.dp_reduce()
|
|
|
|
return output
|
|
|
|
|
|
|
|
def validation_step_end(self, output):
|
|
|
|
if isinstance(output, Result):
|
|
|
|
output.dp_reduce()
|
|
|
|
return output
|
|
|
|
|
|
|
|
def test_step_end(self, output):
|
|
|
|
if isinstance(output, Result):
|
|
|
|
output.dp_reduce()
|
|
|
|
return output
|
2020-09-12 19:27:11 +00:00
|
|
|
|
|
|
|
def set_world_ranks(self, process_idx):
|
|
|
|
self.trainer.local_rank = self.trainer.node_rank
|
|
|
|
self.trainer.global_rank = self.trainer.node_rank
|
|
|
|
self.trainer.world_size = self.trainer.num_nodes
|
|
|
|
|
2020-10-03 13:02:35 +00:00
|
|
|
def broadcast(self, obj, src=0):
|
|
|
|
return self.dist.broadcast(obj)
|
2020-09-12 19:27:11 +00:00
|
|
|
|
2020-10-03 13:02:35 +00:00
|
|
|
def model_to_device(self, model, process_idx):
|
|
|
|
self.trainer.root_gpu = process_idx
|
2020-09-12 19:27:11 +00:00
|
|
|
torch.cuda.set_device(self.trainer.root_gpu)
|
|
|
|
model.cuda(self.trainer.root_gpu)
|
|
|
|
|
|
|
|
def get_device_ids(self):
|
|
|
|
device_ids = self.trainer.data_parallel_device_ids
|
|
|
|
return device_ids
|
2020-10-03 13:02:35 +00:00
|
|
|
|
|
|
|
def ddp_train(self, process_idx, mp_queue, model):
|
|
|
|
"""
|
|
|
|
Entry point for ddp
|
|
|
|
|
|
|
|
Args:
|
|
|
|
process_idx:
|
|
|
|
mp_queue: multiprocessing queue
|
|
|
|
model:
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
"""
|
|
|
|
# show progressbar only on progress_rank 0
|
|
|
|
if (self.trainer.node_rank != 0 or process_idx != 0) and self.trainer.progress_bar_callback is not None:
|
|
|
|
self.trainer.progress_bar_callback.disable()
|
|
|
|
|
|
|
|
# determine which process we are and world size
|
|
|
|
self.set_world_ranks(process_idx)
|
|
|
|
|
|
|
|
# set warning rank
|
|
|
|
rank_zero_only.rank = self.trainer.global_rank
|
|
|
|
|
|
|
|
# set up server using proc 0's ip address
|
|
|
|
# try to init for 20 times at max in case ports are taken
|
|
|
|
# where to store ip_table
|
|
|
|
model.trainer = self.trainer
|
2020-10-04 03:39:17 +00:00
|
|
|
self.init_ddp_connection(
|
2020-10-03 13:02:35 +00:00
|
|
|
self.trainer.global_rank,
|
|
|
|
self.trainer.world_size,
|
|
|
|
self.trainer.is_slurm_managing_tasks
|
|
|
|
)
|
|
|
|
|
|
|
|
# call setup after the ddp process has connected
|
|
|
|
self.trainer.call_setup_hook(model)
|
|
|
|
|
|
|
|
# on world_size=0 let everyone know training is starting
|
|
|
|
if self.trainer.is_global_zero and not torch.distributed.is_initialized():
|
|
|
|
log.info('-' * 100)
|
|
|
|
log.info(f'distributed_backend={self.trainer.distributed_backend}')
|
|
|
|
log.info(f'All DDP processes registered. Starting ddp with {self.trainer.world_size} processes')
|
|
|
|
log.info('-' * 100)
|
|
|
|
|
|
|
|
# call sync_bn before .cuda(), configure_apex and configure_ddp
|
|
|
|
if self.trainer.sync_batchnorm:
|
2020-10-07 02:42:33 +00:00
|
|
|
model = self.configure_sync_batchnorm(model)
|
2020-10-03 13:02:35 +00:00
|
|
|
|
|
|
|
# move the model to the correct device
|
|
|
|
self.model_to_device(model, process_idx)
|
|
|
|
|
|
|
|
# CHOOSE OPTIMIZER
|
|
|
|
# allow for lr schedulers as well
|
|
|
|
self.setup_optimizers(model)
|
|
|
|
|
|
|
|
# set model properties before going into wrapper
|
|
|
|
self.trainer.model_connector.copy_trainer_model_properties(model)
|
|
|
|
|
|
|
|
# 16-bit
|
|
|
|
model = self.trainer.precision_connector.connect(model)
|
|
|
|
|
|
|
|
# device ids change depending on the DDP setup
|
|
|
|
device_ids = self.get_device_ids()
|
|
|
|
|
|
|
|
# allow user to configure ddp
|
|
|
|
model = model.configure_ddp(model, device_ids)
|
|
|
|
|
|
|
|
# set up training routine
|
|
|
|
self.trainer.train_loop.setup_training(model)
|
|
|
|
|
|
|
|
# train or test
|
|
|
|
results = self.train_or_test()
|
|
|
|
|
|
|
|
# clean up memory
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
return results
|
2020-10-07 02:42:33 +00:00
|
|
|
|
|
|
|
def configure_sync_batchnorm(self, model: "LightningModule") -> "LightningModule":
|
|
|
|
"""
|
|
|
|
Add global batchnorm for a model spread across multiple GPUs and nodes.
|
|
|
|
|
|
|
|
Override to synchronize batchnorm between specific process groups instead
|
|
|
|
of the whole world or use a different sync_bn like `apex`'s version.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model: pointer to current :class:`LightningModule`.
|
|
|
|
|
|
|
|
Return:
|
|
|
|
LightningModule with batchnorm layers synchronized between process groups
|
|
|
|
"""
|
|
|
|
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model, process_group=None)
|
|
|
|
return model
|