2020-12-02 13:05:11 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License
|
2021-07-22 10:03:35 +00:00
|
|
|
import collections
|
|
|
|
from copy import deepcopy
|
2022-02-17 23:38:39 +00:00
|
|
|
from unittest.mock import patch
|
2021-07-22 10:03:35 +00:00
|
|
|
|
2020-12-02 13:05:11 +00:00
|
|
|
import pytest
|
|
|
|
import torch
|
2021-02-18 00:03:26 +00:00
|
|
|
from torch import nn
|
2021-10-26 19:53:01 +00:00
|
|
|
from torch.utils.data import DataLoader
|
2020-12-02 13:05:11 +00:00
|
|
|
|
|
|
|
from pytorch_lightning import Trainer
|
2021-07-09 15:28:54 +00:00
|
|
|
from pytorch_lightning.accelerators.cpu import CPUAccelerator
|
|
|
|
from pytorch_lightning.accelerators.tpu import TPUAccelerator
|
2022-02-17 23:38:39 +00:00
|
|
|
from pytorch_lightning.plugins import PrecisionPlugin, TPUPrecisionPlugin, XLACheckpointIO
|
2021-12-23 07:26:28 +00:00
|
|
|
from pytorch_lightning.strategies import DDPStrategy, TPUSpawnStrategy
|
2021-10-06 08:16:44 +00:00
|
|
|
from pytorch_lightning.utilities import find_shared_parameters
|
2021-07-09 15:28:54 +00:00
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
2021-10-26 19:53:01 +00:00
|
|
|
from tests.helpers.boring_model import BoringModel, RandomDataset
|
2021-03-02 16:21:20 +00:00
|
|
|
from tests.helpers.runif import RunIf
|
2021-02-08 10:52:02 +00:00
|
|
|
from tests.helpers.utils import pl_multi_process_test
|
2020-12-02 13:05:11 +00:00
|
|
|
|
|
|
|
|
2021-02-18 00:03:26 +00:00
|
|
|
class WeightSharingModule(BoringModel):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.layer_1 = nn.Linear(32, 10, bias=False)
|
|
|
|
self.layer_2 = nn.Linear(10, 32, bias=False)
|
|
|
|
self.layer_3 = nn.Linear(32, 10, bias=False)
|
|
|
|
self.layer_3.weight = self.layer_1.weight
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.layer_1(x)
|
|
|
|
x = self.layer_2(x)
|
|
|
|
x = self.layer_3(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
2021-03-02 16:21:20 +00:00
|
|
|
@RunIf(tpu=True)
|
2020-12-02 13:05:11 +00:00
|
|
|
@pl_multi_process_test
|
|
|
|
def test_resume_training_on_cpu(tmpdir):
|
2021-09-06 12:49:09 +00:00
|
|
|
"""Checks if training can be resumed from a saved checkpoint on CPU."""
|
2020-12-02 13:05:11 +00:00
|
|
|
# Train a model on TPU
|
|
|
|
model = BoringModel()
|
2021-10-12 07:55:07 +00:00
|
|
|
trainer = Trainer(max_epochs=1, tpu_cores=8)
|
2020-12-02 13:05:11 +00:00
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
model_path = trainer.checkpoint_callback.best_model_path
|
|
|
|
|
|
|
|
# Verify saved Tensors are on CPU
|
|
|
|
ckpt = torch.load(model_path)
|
|
|
|
weight_tensor = list(ckpt["state_dict"].values())[0]
|
|
|
|
assert weight_tensor.device == torch.device("cpu")
|
|
|
|
|
|
|
|
# Verify that training is resumed on CPU
|
2021-10-25 19:05:31 +00:00
|
|
|
trainer = Trainer(max_epochs=1, default_root_dir=tmpdir)
|
|
|
|
trainer.fit(model, ckpt_path=model_path)
|
2021-05-04 10:50:56 +00:00
|
|
|
assert trainer.state.finished, f"Training failed with {trainer.state}"
|
2020-12-02 13:05:11 +00:00
|
|
|
|
|
|
|
|
2021-03-02 16:21:20 +00:00
|
|
|
@RunIf(tpu=True)
|
2020-12-02 13:05:11 +00:00
|
|
|
@pl_multi_process_test
|
|
|
|
def test_if_test_works_after_train(tmpdir):
|
2021-07-26 11:37:35 +00:00
|
|
|
"""Ensure that .test() works after .fit()"""
|
2020-12-02 13:05:11 +00:00
|
|
|
|
|
|
|
# Train a model on TPU
|
|
|
|
model = BoringModel()
|
PoC: Accelerator refactor (#5743)
* restoring the result from subprocess
* fix queue.get() order for results
* add missing "block_backward_sync" context manager
* add missing "block_backward_sync" context manager
* fix sync_batchnorm
* fix supported gpu-ids for tuple
* fix clip gradients and inf recursion
* accelerator selection: added cluster_environment plugin
* fix torchelastic test
* fix reduce early stopping decision for DDP
* fix tests: callbacks, conversion to lightning optimizer
* fix lightning optimizer does not pickle
* fix setting benchmark and deterministic option
* fix slurm amp test
* fix prepare_data test and determine node_rank
* fix retrieving last path when testing
* remove obsolete plugin argument
* fix test: test_trainer_config
* fix torchscript tests
* fix trainer.model access
* move properties
* fix test_transfer_batch_hook
* fix auto_select_gpus
* fix omegaconf test
* fix test that needs to simulate slurm ddp
* add horovod plugin
* fix test with named arguments
* clean up whitespace
* fix datamodules test
* remove old accelerators
* fix naming
* move old plugins
* move to plugins
* create precision subpackage
* create training_type subpackage
* fix all new import errors
* fix wrong arguments order passed to test
* fix LR finder
* Added sharded training type and amp plugin
* Move clip grad to precision plugin
* Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically
* Fix import issue, attempting to fix tests
* Fix initial test
* Reflect hook logic from master, should wrap model after move to device
* Optional state consolidation, since master has optimizers not wrapped
* change attribute for instance test
* reset optimizers
optimizers are not used in main process, so state would be wrong.
* legacy
* imports in accel
* legacy2
* trainer imports
* fix import errors after rebase
* move hook to new setup location
* provide unwrapping logic
* fix trainer callback system
* added ddp2 implementation
* fix imports .legacy
* move plugins
* restore legacy
* drop test.py from root
* add tpu accelerator and plugins
* fixes
* fix lightning optimizer merge
* reset bugreportmodel
* unwrapping
* step routing forward
* model access
* unwrap
* opt
* integrate distrib_type
* sync changes
* sync
* fixes
* add forgotten generators
* add missing logic
* update
* import
* missed imports
* import fixes
* isort
* mv f
* changelog
* format
* move helper to parallel plugin
* d
* add world size
* clean up
* duplicate
* activate ddp_sharded and tpu
* set nvidia flags
* remove unused colab var
* use_tpu <-> on_tpu attrs
* make some ddp_cpu and clusterplugin tests pass
* Ref/accelerator connector (#5742)
* final cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* connector cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* trainer cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* accelerator cleanup + missing logic in accelerator connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add missing changes to callbacks
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* reflect accelerator changes to lightning module
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* clean cluster envs
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* cleanup plugins
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add broadcasting
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* yapf
* remove plugin connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* plugins
* manual optimization
* update optimizer routing
* add rank to torchelastic
* fix memory mixed precision
* setstate on trainer for pickling in ddp spawn
* add predict method
* add back commented accelerator code
* adapt test for sync_batch_norm to new plugin
* fix deprecated tests
* fix ddp cpu choice when no num_processes are given
* yapf format
* skip a memory test that cannot pass anymore
* fix pickle error in spawn plugin
* x
* avoid
* x
* fix cyclic import in docs build
* add support for sharded
* update typing
* add sharded and sharded_spawn to distributed types
* make unwrap model default
* refactor LightningShardedDataParallel similar to LightningDistributedDataParallel
* update sharded spawn to reflect changes
* update sharded to reflect changes
* Merge 1.1.5 changes
* fix merge
* fix merge
* yapf isort
* fix merge
* yapf isort
* fix indentation in test
* copy over reinit scheduler implementation from dev1.2
* fix apex tracking calls with dev_debugger
* reduce diff to dev1.2, clean up
* fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu
* sort plugin tests legacy/new
* fix error handling for amp on cpu
* fix merge
fix merge
fix merge
* [Feat] Resolve manual_backward (#5837)
* resolve manual_backward
* resolve flake8
* update
* resolve for ddp_spawn
* resolve flake8
* resolve flake8
* resolve flake8
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* fix tests/accelerator tests on cpu
* [BugFix] Resolve manual optimization (#5852)
* resolve manual_optimization
* update
* update
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856)
* resovle a bug
* Accelerator refactor sharded rpc (#5854)
* rpc branch
* merge
* update handling of rpc
* make devices etc. Optional in RPC
* set devices etc. later if necessary
* remove devices from sequential
* make devices optional in rpc
* fix import
* uncomment everything
* fix cluster selection
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* resolve bug
* fix assert in rpc test
* resolve a test
* fix docs compilation
* accelerator refactor - fix for sharded parity test (#5866)
* fix memory issue with ddp_spawn
* x
x
x
x
x
x
x
x
x
* x
* Remove DDP2 as this does not apply
* Add missing pre optimizer hook to ensure lambda closure is called
* fix apex docstring
* [accelerator][BugFix] Resolve some test for 1 gpu (#5863)
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* update
* resolve flake8
* update
* update
* update
* update
* update
* all_gather
* update
* make plugins work, add misconfig for RPC
* update
* update
* remove breaking test
* resolve some tests
* resolve flake8
* revert to ddp_spawn
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
* yapf isort
* resolve flake8
* fix apex doctests
* fix apex doctests 2
* resolve docs
* update drone
* clean env
* update
* update
* update
* update
* merge
* Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881)
* Fix RPC related tests, clean out old API, update for new accelerator API
* Move tests out of legacy folder, update paths and names
* Update test_remove_1-4.py
* Expose properties for tpu cores/gpus/num_gpus
* Add root GPU property
* Move properties to properties.py
* move tests that were previously in drone
* Fix root GPU property (#5908)
* Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator
* Add missing tests back
* fix best model path transfer when no checkpoint callback available
* Fix setup hook order [wip] (#5858)
* Call trainer setup hook before accelerator setup
* Add test case
* add new test
* typo
* fix callback order in test
Co-authored-by: tchaton <thomas@grid.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* rename ddp sequential -> rpc sequential for special test
* revert
* fix stupid merge problem
* Use property in connector for sampler (#5913)
* merge the import conflicts
* fix spawning of processes in slurm
* [wip] Fix some bugs for TPU [skip ci] (#5878)
* fixed for single tpu
* fixed spawn
* fixed spawn
* update
* update
* wip
* resolve bugs
* resolve bug
* update on comment
* removed decorator
* resolve comments
* set to 4
* update
* update
* need cleaning
* update
* update
* update
* resolve flake8
* resolve bugs
* exclude broadcast
* resolve bugs
* change test
* update
* update
* skip if meet fails
* properly raise trace
* update
* add catch
* wrap test
* resolve typo
* update
* typo
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
* resolve some tests
* update
* fix imports
* update
* resolve flake8
* update azure pipeline
* skip a sharded test on cpu that requires a gpu
* resolve tpus
* resolve bug
* resolve flake8
* update
* updat utils
* revert permission change on files
* suggestions from carlos
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting changes
* remove incomplete comment
* Update pytorch_lightning/accelerators/__init__.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting change
* add types
* warn 1.7 ddp manual backward only if ddp kwarg unset
* yapf + isort
* pep8 unused imports
* fix cyclic import in docs
* Apply suggestions from code review
* typer in accelerator.py
* typo
* Apply suggestions from code review
* formatting
* update on comments
* update typo
* Update pytorch_lightning/trainer/properties.py
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* update
* suggestion from code review
* suggestion from code review
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
|
|
|
trainer = Trainer(max_epochs=1, tpu_cores=8, default_root_dir=tmpdir, fast_dev_run=True)
|
2020-12-02 13:05:11 +00:00
|
|
|
trainer.fit(model)
|
2021-02-18 18:28:23 +00:00
|
|
|
assert len(trainer.test(model)) == 1
|
2021-02-18 00:03:26 +00:00
|
|
|
|
|
|
|
|
2021-07-09 15:28:54 +00:00
|
|
|
@RunIf(tpu=True)
|
|
|
|
def test_accelerator_cpu_with_tpu_cores_flag():
|
2022-02-22 13:02:13 +00:00
|
|
|
assert TPUAccelerator.is_available()
|
2021-07-09 15:28:54 +00:00
|
|
|
|
|
|
|
trainer = Trainer(accelerator="cpu", tpu_cores=8)
|
|
|
|
assert isinstance(trainer.accelerator, CPUAccelerator)
|
|
|
|
|
2022-02-22 13:02:13 +00:00
|
|
|
trainer = Trainer(accelerator="tpu", tpu_cores=8)
|
2021-07-09 15:28:54 +00:00
|
|
|
assert isinstance(trainer.accelerator, TPUAccelerator)
|
2021-12-22 02:11:43 +00:00
|
|
|
assert isinstance(trainer.strategy, TPUSpawnStrategy)
|
2021-07-20 04:33:12 +00:00
|
|
|
|
|
|
|
|
|
|
|
@RunIf(tpu=True)
|
2022-03-18 19:38:57 +00:00
|
|
|
@pl_multi_process_test
|
2022-02-22 13:02:13 +00:00
|
|
|
@pytest.mark.parametrize(["accelerator", "devices"], [("auto", 8), ("auto", "auto"), ("tpu", None)])
|
|
|
|
def test_accelerator_tpu(accelerator, devices):
|
|
|
|
assert TPUAccelerator.is_available()
|
2021-07-20 04:33:12 +00:00
|
|
|
|
2022-02-22 13:02:13 +00:00
|
|
|
trainer = Trainer(accelerator=accelerator, devices=devices)
|
|
|
|
assert isinstance(trainer.accelerator, TPUAccelerator)
|
|
|
|
assert isinstance(trainer.strategy, TPUSpawnStrategy)
|
2022-03-18 19:38:57 +00:00
|
|
|
assert trainer.num_devices == 8
|
2021-07-20 04:33:12 +00:00
|
|
|
assert trainer.tpu_cores == 8
|
|
|
|
|
|
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
|
|
def test_accelerator_tpu_with_tpu_cores_priority():
|
2021-07-26 11:37:35 +00:00
|
|
|
"""Test for checking `tpu_cores` flag takes priority over `devices`."""
|
2021-07-20 04:33:12 +00:00
|
|
|
|
|
|
|
tpu_cores = 8
|
|
|
|
with pytest.warns(UserWarning, match="The flag `devices=1` will be ignored,"):
|
|
|
|
trainer = Trainer(accelerator="tpu", devices=1, tpu_cores=tpu_cores)
|
|
|
|
|
|
|
|
assert trainer.tpu_cores == tpu_cores
|
|
|
|
|
|
|
|
|
|
|
|
@RunIf(tpu=True)
|
2022-03-18 19:38:57 +00:00
|
|
|
@pl_multi_process_test
|
2021-07-20 04:33:12 +00:00
|
|
|
def test_set_devices_if_none_tpu():
|
|
|
|
trainer = Trainer(accelerator="tpu", tpu_cores=8)
|
2022-03-18 19:38:57 +00:00
|
|
|
assert trainer.num_devices == 8
|
2021-07-22 10:03:35 +00:00
|
|
|
|
|
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
|
|
def test_manual_optimization_tpus(tmpdir):
|
|
|
|
class ManualOptimizationModel(BoringModel):
|
|
|
|
|
|
|
|
count = 0
|
|
|
|
called = collections.defaultdict(int)
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.automatic_optimization = False
|
|
|
|
|
|
|
|
@property
|
|
|
|
def should_update(self):
|
|
|
|
return self.count % 2 == 0
|
|
|
|
|
2021-10-07 10:18:11 +00:00
|
|
|
def on_train_batch_start(self, batch, batch_idx):
|
2021-07-22 10:03:35 +00:00
|
|
|
self.called["on_train_batch_start"] += 1
|
|
|
|
self.weight_before = self.layer.weight.clone()
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
|
|
self.called["training_step"] += 1
|
|
|
|
opt = self.optimizers()
|
|
|
|
output = self.layer(batch)
|
|
|
|
loss = self.loss(batch, output)
|
|
|
|
|
|
|
|
if self.should_update:
|
|
|
|
self.manual_backward(loss)
|
|
|
|
opt.step()
|
|
|
|
opt.zero_grad()
|
|
|
|
return loss
|
|
|
|
|
2021-10-07 10:18:11 +00:00
|
|
|
def on_train_batch_end(self, outputs, batch, batch_idx):
|
2021-07-22 10:03:35 +00:00
|
|
|
self.called["on_train_batch_end"] += 1
|
|
|
|
after_before = self.layer.weight.clone()
|
|
|
|
if self.should_update:
|
|
|
|
assert not torch.equal(self.weight_before, after_before), self.count
|
|
|
|
else:
|
|
|
|
assert torch.equal(self.weight_before, after_before)
|
|
|
|
assert torch.all(self.layer.weight.grad == 0)
|
|
|
|
self.count += 1
|
|
|
|
|
2021-10-18 12:43:06 +00:00
|
|
|
def on_train_start(self):
|
|
|
|
opt = self.optimizers()
|
|
|
|
self.opt_step_patch = patch.object(opt, "step", wraps=opt.step)
|
|
|
|
self.opt_step_mock = self.opt_step_patch.start()
|
|
|
|
|
2021-07-22 10:03:35 +00:00
|
|
|
def on_train_end(self):
|
|
|
|
assert self.called["training_step"] == 5
|
|
|
|
assert self.called["on_train_batch_start"] == 5
|
|
|
|
assert self.called["on_train_batch_end"] == 5
|
|
|
|
|
2021-10-18 12:43:06 +00:00
|
|
|
self.opt_step_patch.stop()
|
|
|
|
assert self.opt_step_mock.call_count == 3
|
2021-07-22 10:03:35 +00:00
|
|
|
|
|
|
|
model = ManualOptimizationModel()
|
|
|
|
model_copy = deepcopy(model)
|
|
|
|
model.training_step_end = None
|
|
|
|
model.training_epoch_end = None
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
max_epochs=1,
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
limit_train_batches=5,
|
|
|
|
limit_test_batches=0,
|
|
|
|
limit_val_batches=0,
|
2022-03-24 14:09:39 +00:00
|
|
|
accelerator="tpu",
|
|
|
|
devices=8,
|
2021-07-22 10:03:35 +00:00
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
for param, param_copy in zip(model.parameters(), model_copy.parameters()):
|
|
|
|
assert not torch.equal(param.cpu().data, param_copy.data)
|
2021-07-26 13:52:34 +00:00
|
|
|
|
|
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
|
|
def test_ddp_cpu_not_supported_on_tpus():
|
|
|
|
with pytest.raises(MisconfigurationException, match="`accelerator='ddp_cpu'` is not supported on TPU machines"):
|
|
|
|
Trainer(accelerator="ddp_cpu")
|
2021-10-06 08:16:44 +00:00
|
|
|
|
|
|
|
|
2021-10-13 12:34:06 +00:00
|
|
|
@RunIf(tpu=True)
|
2022-02-17 23:38:39 +00:00
|
|
|
def test_strategy_choice_tpu_str_ddp_spawn(tmpdir):
|
|
|
|
with pytest.raises(ValueError, match="TPUAccelerator` can only be used with a `SingleTPUStrategy`"):
|
|
|
|
Trainer(strategy="ddp_spawn", accelerator="tpu", devices=8)
|
|
|
|
|
|
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
|
|
def test_strategy_choice_tpu_str_tpu_spawn_debug(tmpdir):
|
|
|
|
trainer = Trainer(strategy="tpu_spawn_debug", accelerator="tpu", devices=8)
|
2021-12-22 02:11:43 +00:00
|
|
|
assert isinstance(trainer.strategy, TPUSpawnStrategy)
|
2021-10-13 12:34:06 +00:00
|
|
|
|
|
|
|
|
|
|
|
@RunIf(tpu=True)
|
2021-12-21 16:36:16 +00:00
|
|
|
def test_strategy_choice_tpu_strategy(tmpdir):
|
|
|
|
trainer = Trainer(strategy=TPUSpawnStrategy(), accelerator="tpu", devices=8)
|
2021-12-22 02:11:43 +00:00
|
|
|
assert isinstance(trainer.strategy, TPUSpawnStrategy)
|
2021-10-13 12:34:06 +00:00
|
|
|
|
|
|
|
|
2021-10-06 08:16:44 +00:00
|
|
|
@RunIf(tpu=True)
|
|
|
|
def test_auto_parameters_tying_tpus(tmpdir):
|
|
|
|
|
|
|
|
model = WeightSharingModule()
|
|
|
|
shared_params = find_shared_parameters(model)
|
|
|
|
|
|
|
|
assert shared_params[0] == ["layer_1.weight", "layer_3.weight"]
|
|
|
|
|
2022-03-24 14:09:39 +00:00
|
|
|
trainer = Trainer(default_root_dir=tmpdir, limit_train_batches=5, accelerator="tpu", devices=8, max_epochs=1)
|
2021-10-06 08:16:44 +00:00
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
assert torch.all(torch.eq(model.layer_1.weight, model.layer_3.weight))
|
|
|
|
|
|
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
|
|
def test_auto_parameters_tying_tpus_nested_module(tmpdir):
|
|
|
|
class SubModule(nn.Module):
|
|
|
|
def __init__(self, layer):
|
|
|
|
super().__init__()
|
|
|
|
self.layer = layer
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.layer(x)
|
|
|
|
|
|
|
|
class NestedModule(BoringModel):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.layer = nn.Linear(32, 10, bias=False)
|
|
|
|
self.net_a = SubModule(self.layer)
|
|
|
|
self.layer_2 = nn.Linear(10, 32, bias=False)
|
|
|
|
self.net_b = SubModule(self.layer)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.net_a(x)
|
|
|
|
x = self.layer_2(x)
|
|
|
|
x = self.net_b(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
model = NestedModule()
|
|
|
|
|
2022-03-24 14:09:39 +00:00
|
|
|
trainer = Trainer(default_root_dir=tmpdir, limit_train_batches=5, accelerator="tpu", devices=8, max_epochs=1)
|
2021-10-06 08:16:44 +00:00
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
assert torch.all(torch.eq(model.net_a.layer.weight, model.net_b.layer.weight))
|
2021-10-19 17:48:57 +00:00
|
|
|
|
|
|
|
|
2022-02-28 16:06:23 +00:00
|
|
|
@RunIf(tpu=True)
|
2021-10-19 17:48:57 +00:00
|
|
|
def test_tpu_invalid_raises():
|
2022-02-17 23:38:39 +00:00
|
|
|
strategy = TPUSpawnStrategy(accelerator=TPUAccelerator(), precision_plugin=PrecisionPlugin())
|
2021-10-19 17:48:57 +00:00
|
|
|
with pytest.raises(ValueError, match="TPUAccelerator` can only be used with a `TPUPrecisionPlugin"):
|
2022-02-28 16:06:23 +00:00
|
|
|
Trainer(strategy=strategy, devices=8)
|
2021-10-19 17:48:57 +00:00
|
|
|
|
2022-02-17 23:38:39 +00:00
|
|
|
strategy = DDPStrategy(accelerator=TPUAccelerator(), precision_plugin=TPUPrecisionPlugin())
|
2021-12-21 20:09:30 +00:00
|
|
|
with pytest.raises(ValueError, match="TPUAccelerator` can only be used with a `SingleTPUStrategy`"):
|
2022-02-28 16:06:23 +00:00
|
|
|
Trainer(strategy=strategy, devices=8)
|
2021-10-20 21:09:16 +00:00
|
|
|
|
|
|
|
|
2022-02-28 16:06:23 +00:00
|
|
|
@RunIf(tpu=True)
|
2021-11-19 00:39:01 +00:00
|
|
|
def test_tpu_invalid_raises_set_precision_with_strategy():
|
2021-12-16 04:41:34 +00:00
|
|
|
accelerator = TPUAccelerator()
|
2022-02-17 23:38:39 +00:00
|
|
|
strategy = TPUSpawnStrategy(accelerator=accelerator, precision_plugin=PrecisionPlugin())
|
2021-11-19 00:39:01 +00:00
|
|
|
with pytest.raises(ValueError, match="`TPUAccelerator` can only be used with a `TPUPrecisionPlugin`"):
|
2022-02-28 16:06:23 +00:00
|
|
|
Trainer(strategy=strategy, devices=8)
|
2021-11-19 00:39:01 +00:00
|
|
|
|
2021-12-16 04:41:34 +00:00
|
|
|
accelerator = TPUAccelerator()
|
2022-02-17 23:38:39 +00:00
|
|
|
strategy = DDPStrategy(accelerator=accelerator, precision_plugin=TPUPrecisionPlugin())
|
2021-11-19 00:39:01 +00:00
|
|
|
with pytest.raises(
|
2021-12-21 20:09:30 +00:00
|
|
|
ValueError, match="The `TPUAccelerator` can only be used with a `SingleTPUStrategy` or `TPUSpawnStrategy"
|
2021-11-19 00:39:01 +00:00
|
|
|
):
|
2022-02-28 16:06:23 +00:00
|
|
|
Trainer(strategy=strategy, devices=8)
|
2021-11-19 00:39:01 +00:00
|
|
|
|
|
|
|
|
2021-10-20 21:09:16 +00:00
|
|
|
@RunIf(tpu=True)
|
|
|
|
def test_xla_checkpoint_plugin_being_default():
|
2022-03-24 14:09:39 +00:00
|
|
|
trainer = Trainer(accelerator="tpu", devices=8)
|
2021-12-22 02:11:43 +00:00
|
|
|
assert isinstance(trainer.strategy.checkpoint_io, XLACheckpointIO)
|
2021-10-26 19:53:01 +00:00
|
|
|
|
|
|
|
|
|
|
|
@RunIf(tpu=True)
|
2021-12-22 20:23:30 +00:00
|
|
|
@patch("pytorch_lightning.strategies.tpu_spawn.xm")
|
2021-10-26 19:53:01 +00:00
|
|
|
def test_mp_device_dataloader_attribute(_):
|
|
|
|
dataset = RandomDataset(32, 64)
|
2021-12-21 16:36:16 +00:00
|
|
|
dataloader = TPUSpawnStrategy().process_dataloader(DataLoader(dataset))
|
2021-10-26 19:53:01 +00:00
|
|
|
assert dataloader.dataset == dataset
|
2022-02-24 08:12:02 +00:00
|
|
|
|
|
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
|
|
def test_warning_if_tpus_not_used():
|
|
|
|
with pytest.warns(UserWarning, match="TPU available but not used. Set `accelerator` and `devices`"):
|
|
|
|
Trainer()
|
2022-03-18 19:38:57 +00:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skip(reason="TODO(@kaushikb11): Optimize TPU tests to avoid timeouts")
|
|
|
|
@RunIf(tpu=True)
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
["devices", "expected_device_ids"],
|
|
|
|
[
|
|
|
|
(1, [0]),
|
|
|
|
(8, list(range(8))),
|
|
|
|
("8", list(range(8))),
|
|
|
|
([2], [2]),
|
|
|
|
("2,", [2]),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_trainer_config_device_ids(devices, expected_device_ids):
|
|
|
|
trainer = Trainer(accelerator="tpu", devices=devices)
|
|
|
|
assert trainer.device_ids == expected_device_ids
|
|
|
|
assert trainer.num_devices == len(expected_device_ids)
|