lightning/tests/helpers/boring_model.py

57 lines
1.7 KiB
Python
Raw Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch.utils.data import Dataset, IterableDataset
from pytorch_lightning.demos.boring_classes import BoringDataModule, BoringModel, ManualOptimBoringModel, RandomDataset
__all__ = ["BoringDataModule", "BoringModel", "ManualOptimBoringModel", "RandomDataset"]
class RandomDictDataset(Dataset):
def __init__(self, size: int, length: int):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
a = self.data[index]
b = a + 2
return {"a": a, "b": b}
def __len__(self):
return self.len
class RandomIterableDataset(IterableDataset):
def __init__(self, size: int, count: int):
self.count = count
self.size = size
def __iter__(self):
for _ in range(self.count):
yield torch.randn(self.size)
class RandomIterableDatasetWithLen(IterableDataset):
def __init__(self, size: int, count: int):
self.count = count
self.size = size
def __iter__(self):
for _ in range(len(self)):
yield torch.randn(self.size)
def __len__(self):
return self.count