lightning/tests/plugins/test_double_plugin.py

163 lines
5.1 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pickle
from unittest.mock import MagicMock
import pytest
import torch
from torch.utils.data import DataLoader, Dataset
from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DoublePrecisionPlugin
from tests.helpers.boring_model import BoringModel, RandomDataset
from tests.helpers.runif import RunIf
class RandomFloatIntDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.float_data = torch.randn(length, size)
self.int_data = torch.randint(10, (length, 1))
def __getitem__(self, index):
return self.float_data[index], self.int_data[index]
def __len__(self):
return self.len
class DoublePrecisionBoringModel(BoringModel):
def training_step(self, batch, batch_idx):
float_data, int_data = batch
assert torch.tensor([0.]).dtype == torch.float64
assert torch.tensor([0.], dtype=torch.float16).dtype == torch.float16
assert float_data.dtype == torch.float64
output = self(float_data)
loss = self.loss(batch, output)
return {"loss": loss}
def training_epoch_end(self, outputs) -> None:
assert torch.tensor([0.]).dtype == torch.float32
return super().training_epoch_end(outputs)
def validation_step(self, batch, batch_idx):
assert batch.dtype == torch.float64
assert torch.tensor([0.]).dtype == torch.float64
assert torch.tensor([0.], dtype=torch.float16).dtype == torch.float16
output = self(batch)
loss = self.loss(batch, output)
return {"x": loss}
def test_step(self, batch, batch_idx):
assert batch.dtype == torch.float64
assert torch.tensor([0.]).dtype == torch.float64
assert torch.tensor([0.], dtype=torch.float16).dtype == torch.float16
output = self(batch)
loss = self.loss(batch, output)
return {"y": loss}
def predict_step(self, batch, batch_idx, dataloader_idx=None):
assert batch.dtype == torch.float64
assert torch.tensor([0.]).dtype == torch.float64
assert torch.tensor([0.], dtype=torch.float16).dtype == torch.float16
return self(batch)
def on_fit_start(self):
assert self.layer.weight.dtype == torch.float64
def on_after_backward(self):
assert self.layer.weight.grad.dtype == torch.float64
def train_dataloader(self):
dataset = RandomFloatIntDataset(32, 64)
assert dataset.float_data.dtype == torch.float32 # Don't start with double data
return DataLoader(dataset)
def predict_dataloader(self):
return DataLoader(RandomDataset(32, 64))
class DoublePrecisionBoringModelNoForward(BoringModel):
def training_step(self, batch, batch_idx):
assert batch.dtype == torch.float64
output = self.layer(batch)
assert output.dtype == torch.float64
loss = self.loss(batch, output)
return {"loss": loss}
def validation_step(self, batch, batch_idx):
assert batch.dtype == torch.float64
output = self.layer(batch)
assert output.dtype == torch.float64
loss = self.loss(batch, output)
return {"x": loss}
def test_step(self, batch, batch_idx):
assert batch.dtype == torch.float64
output = self.layer(batch)
assert output.dtype == torch.float64
loss = self.loss(batch, output)
return {"y": loss}
def predict_step(self, batch, batch_idx, dataloader_idx=None):
assert batch.dtype == torch.float64
output = self.layer(batch)
assert output.dtype == torch.float64
return output
def predict_dataloader(self):
return DataLoader(RandomDataset(32, 64))
DeepSpeed ZeRO Update (#6546) * Add context to call hook to handle all modules defined within the hook * Expose some additional parameters * Added docs, exposed parameters * Make sure we only configure if necessary * Setup activation checkpointing regardless, saves the user having to do it manually * Add some tests that fail currently * update * update * update * add tests * change docstring * resolve accumulate_grad_batches * resolve flake8 * Update DeepSpeed to use latest version, add some comments * add metrics * update * Small formatting fixes, clean up some code * Few cleanups * No need for default state * Fix tests, add some boilerplate that should move eventually * Add hook removal * Add a context manager to handle hook * Small naming cleanup * wip * move save_checkpoint responsability to accelerator * resolve flake8 * add BC * Change recommended scale to 16 * resolve flake8 * update test * update install * update * update test * update * update * update test * resolve flake8 * update * update * update on comments * Push * pull * Update pytorch_lightning/plugins/training_type/deepspeed.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update pytorch_lightning/plugins/training_type/deepspeed.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * update * Apply suggestions from code review * Swap to using world size defined by plugin * update * update todo * Remove deepspeed from extra, keep it in the base cuda docker install * Push * pull * update * update * update * update * Minor changes * duplicate * format * format2 Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: Carlos Mocholi <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
2021-03-30 17:39:02 +00:00
@pytest.mark.parametrize('boring_model', (DoublePrecisionBoringModel, DoublePrecisionBoringModelNoForward))
def test_double_precision(tmpdir, boring_model):
model = boring_model()
trainer = Trainer(
max_epochs=2,
default_root_dir=tmpdir,
fast_dev_run=2,
precision=64,
log_every_n_steps=1,
)
trainer.fit(model)
trainer.test(model)
trainer.predict(model)
@RunIf(min_gpus=2)
def test_double_precision_ddp(tmpdir):
model = DoublePrecisionBoringModel()
trainer = Trainer(
max_epochs=1,
default_root_dir=tmpdir,
accelerator='ddp_spawn',
gpus=2,
fast_dev_run=2,
precision=64,
log_every_n_steps=1,
)
trainer.fit(model)
def test_double_precision_pickle(tmpdir):
model = BoringModel()
plugin = DoublePrecisionPlugin()
model, _, __ = plugin.connect(model, MagicMock(), MagicMock())
pickle.dumps(model)