2020-03-05 11:48:54 +00:00
|
|
|
import math
|
|
|
|
import os
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
import tests.models.utils as tutils
|
|
|
|
from pytorch_lightning import Trainer
|
|
|
|
|
|
|
|
from tests.models import (
|
|
|
|
TestModelBase,
|
|
|
|
LightTrainDataloader,
|
2020-03-16 18:35:10 +00:00
|
|
|
LightValidationStepMixin,
|
|
|
|
LightValidationMixin,
|
2020-03-05 11:48:54 +00:00
|
|
|
LightTestOptimizerWithSchedulingMixin,
|
|
|
|
LightTestMultipleOptimizersWithSchedulingMixin,
|
2020-03-16 18:35:10 +00:00
|
|
|
LightTestOptimizersWithMixedSchedulingMixin,
|
|
|
|
LightTestReduceLROnPlateauMixin
|
2020-03-05 11:48:54 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def test_optimizer_with_scheduling(tmpdir):
|
|
|
|
""" Verify that learning rate scheduling is working """
|
|
|
|
tutils.reset_seed()
|
|
|
|
|
|
|
|
class CurrentTestModel(
|
|
|
|
LightTestOptimizerWithSchedulingMixin,
|
|
|
|
LightTrainDataloader,
|
|
|
|
TestModelBase):
|
|
|
|
pass
|
|
|
|
|
|
|
|
hparams = tutils.get_hparams()
|
|
|
|
model = CurrentTestModel(hparams)
|
|
|
|
|
|
|
|
# logger file to get meta
|
|
|
|
trainer_options = dict(
|
|
|
|
default_save_path=tmpdir,
|
|
|
|
max_epochs=1,
|
|
|
|
val_percent_check=0.1,
|
|
|
|
train_percent_check=0.2
|
|
|
|
)
|
|
|
|
|
|
|
|
# fit model
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
|
|
results = trainer.fit(model)
|
|
|
|
|
|
|
|
init_lr = hparams.learning_rate
|
|
|
|
adjusted_lr = [pg['lr'] for pg in trainer.optimizers[0].param_groups]
|
|
|
|
|
|
|
|
assert len(trainer.lr_schedulers) == 1, \
|
|
|
|
'lr scheduler not initialized properly, it has %i elements instread of 1' % len(trainer.lr_schedulers)
|
|
|
|
|
|
|
|
assert all(a == adjusted_lr[0] for a in adjusted_lr), \
|
|
|
|
'Lr not equally adjusted for all param groups'
|
|
|
|
adjusted_lr = adjusted_lr[0]
|
|
|
|
|
|
|
|
assert init_lr * 0.1 == adjusted_lr, \
|
|
|
|
'Lr not adjusted correctly, expected %f but got %f' % (init_lr * 0.1, adjusted_lr)
|
|
|
|
|
|
|
|
|
|
|
|
def test_multi_optimizer_with_scheduling(tmpdir):
|
|
|
|
""" Verify that learning rate scheduling is working """
|
|
|
|
tutils.reset_seed()
|
|
|
|
|
|
|
|
class CurrentTestModel(
|
|
|
|
LightTestMultipleOptimizersWithSchedulingMixin,
|
|
|
|
LightTrainDataloader,
|
|
|
|
TestModelBase):
|
|
|
|
pass
|
|
|
|
|
|
|
|
hparams = tutils.get_hparams()
|
|
|
|
model = CurrentTestModel(hparams)
|
|
|
|
|
|
|
|
# logger file to get meta
|
|
|
|
trainer_options = dict(
|
|
|
|
default_save_path=tmpdir,
|
|
|
|
max_epochs=1,
|
|
|
|
val_percent_check=0.1,
|
|
|
|
train_percent_check=0.2
|
|
|
|
)
|
|
|
|
|
|
|
|
# fit model
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
|
|
results = trainer.fit(model)
|
|
|
|
|
|
|
|
init_lr = hparams.learning_rate
|
|
|
|
adjusted_lr1 = [pg['lr'] for pg in trainer.optimizers[0].param_groups]
|
|
|
|
adjusted_lr2 = [pg['lr'] for pg in trainer.optimizers[1].param_groups]
|
|
|
|
|
|
|
|
assert len(trainer.lr_schedulers) == 2, \
|
|
|
|
'all lr scheduler not initialized properly, it has %i elements instread of 1' % len(trainer.lr_schedulers)
|
|
|
|
|
|
|
|
assert all(a == adjusted_lr1[0] for a in adjusted_lr1), \
|
|
|
|
'Lr not equally adjusted for all param groups for optimizer 1'
|
|
|
|
adjusted_lr1 = adjusted_lr1[0]
|
|
|
|
|
|
|
|
assert all(a == adjusted_lr2[0] for a in adjusted_lr2), \
|
|
|
|
'Lr not equally adjusted for all param groups for optimizer 2'
|
|
|
|
adjusted_lr2 = adjusted_lr2[0]
|
|
|
|
|
|
|
|
assert init_lr * 0.1 == adjusted_lr1 and init_lr * 0.1 == adjusted_lr2, \
|
|
|
|
'Lr not adjusted correctly, expected %f but got %f' % (init_lr * 0.1, adjusted_lr1)
|
|
|
|
|
|
|
|
|
|
|
|
def test_multi_optimizer_with_scheduling_stepping(tmpdir):
|
|
|
|
tutils.reset_seed()
|
|
|
|
|
|
|
|
class CurrentTestModel(
|
|
|
|
LightTestOptimizersWithMixedSchedulingMixin,
|
|
|
|
LightTrainDataloader,
|
|
|
|
TestModelBase):
|
|
|
|
pass
|
|
|
|
|
|
|
|
hparams = tutils.get_hparams()
|
|
|
|
model = CurrentTestModel(hparams)
|
|
|
|
|
|
|
|
# logger file to get meta
|
|
|
|
trainer_options = dict(
|
|
|
|
default_save_path=tmpdir,
|
|
|
|
max_epochs=1,
|
|
|
|
val_percent_check=0.1,
|
|
|
|
train_percent_check=0.2
|
|
|
|
)
|
|
|
|
|
|
|
|
# fit model
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
|
|
results = trainer.fit(model)
|
|
|
|
|
|
|
|
init_lr = hparams.learning_rate
|
|
|
|
adjusted_lr1 = [pg['lr'] for pg in trainer.optimizers[0].param_groups]
|
|
|
|
adjusted_lr2 = [pg['lr'] for pg in trainer.optimizers[1].param_groups]
|
|
|
|
|
|
|
|
assert len(trainer.lr_schedulers) == 2, \
|
|
|
|
'all lr scheduler not initialized properly'
|
|
|
|
|
|
|
|
assert all(a == adjusted_lr1[0] for a in adjusted_lr1), \
|
|
|
|
'lr not equally adjusted for all param groups for optimizer 1'
|
|
|
|
adjusted_lr1 = adjusted_lr1[0]
|
|
|
|
|
|
|
|
assert all(a == adjusted_lr2[0] for a in adjusted_lr2), \
|
|
|
|
'lr not equally adjusted for all param groups for optimizer 2'
|
|
|
|
adjusted_lr2 = adjusted_lr2[0]
|
|
|
|
|
|
|
|
# Called ones after end of epoch
|
|
|
|
assert init_lr * (0.1)**3 == adjusted_lr1, \
|
|
|
|
'lr for optimizer 1 not adjusted correctly'
|
|
|
|
# Called every 3 steps, meaning for 1 epoch of 11 batches, it is called 3 times
|
|
|
|
assert init_lr * 0.1 == adjusted_lr2, \
|
|
|
|
'lr for optimizer 2 not adjusted correctly'
|
2020-03-16 18:35:10 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_reduce_lr_on_plateau_scheduling(tmpdir):
|
|
|
|
tutils.reset_seed()
|
|
|
|
|
|
|
|
class CurrentTestModel(
|
|
|
|
LightTestReduceLROnPlateauMixin,
|
|
|
|
LightTrainDataloader,
|
|
|
|
LightValidationMixin,
|
|
|
|
LightValidationStepMixin,
|
|
|
|
TestModelBase):
|
|
|
|
pass
|
|
|
|
|
|
|
|
hparams = tutils.get_hparams()
|
|
|
|
model = CurrentTestModel(hparams)
|
|
|
|
|
|
|
|
# logger file to get meta
|
|
|
|
trainer_options = dict(
|
|
|
|
default_save_path=tmpdir,
|
|
|
|
max_epochs=1,
|
|
|
|
val_percent_check=0.1,
|
|
|
|
train_percent_check=0.2
|
|
|
|
)
|
|
|
|
|
|
|
|
# fit model
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
|
|
results = trainer.fit(model)
|
|
|
|
|
|
|
|
assert trainer.lr_schedulers[0] == \
|
|
|
|
dict(scheduler=trainer.lr_schedulers[0]['scheduler'], monitor='val_loss',
|
|
|
|
interval='epoch', frequency=1, reduce_on_plateau=True), \
|
|
|
|
'lr schduler was not correctly converted to dict'
|