lightning/pytorch_lightning/trainer/callback_config.py

93 lines
3.1 KiB
Python
Raw Normal View History

import os
from abc import ABC
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from pytorch_lightning.logging import TensorBoardLogger
class TrainerCallbackConfigMixin(ABC):
def __init__(self):
# this is just a summary on variables used in this abstract class,
# the proper values/initialisation should be done in child class
self.default_save_path = None
self.save_checkpoint = None
self.slurm_job_id = None
def configure_checkpoint_callback(self):
"""
Weight path set in this priority:
Checkpoint_callback's path (if passed in).
User provided weights_saved_path
Otherwise use os.getcwd()
"""
if self.checkpoint_callback is True:
# init a default one
if self.logger is not None:
ckpt_path = os.path.join(
self.default_save_path,
self.logger.name,
f'version_{self.logger.version}',
"checkpoints"
)
else:
ckpt_path = os.path.join(self.default_save_path, "checkpoints")
self.checkpoint_callback = ModelCheckpoint(
filepath=ckpt_path
)
elif self.checkpoint_callback is False:
self.checkpoint_callback = None
if self.checkpoint_callback:
# set the path for the callbacks
self.checkpoint_callback.save_function = self.save_checkpoint
# if checkpoint callback used, then override the weights path
self.weights_save_path = self.checkpoint_callback.filepath
# if weights_save_path is still none here, set to current working dir
if self.weights_save_path is None:
self.weights_save_path = self.default_save_path
def configure_early_stopping(self, early_stop_callback, logger):
if early_stop_callback is True:
self.early_stop_callback = EarlyStopping(
monitor='val_loss',
patience=3,
strict=True,
verbose=True,
mode='min'
)
self.enable_early_stop = True
elif early_stop_callback is None:
self.early_stop_callback = EarlyStopping(
monitor='val_loss',
patience=3,
strict=False,
verbose=False,
mode='min'
)
self.enable_early_stop = True
elif not early_stop_callback:
self.early_stop_callback = None
self.enable_early_stop = False
else:
self.early_stop_callback = early_stop_callback
self.enable_early_stop = True
# configure logger
if logger is True:
# default logger
self.logger = TensorBoardLogger(
save_dir=self.default_save_path,
version=self.slurm_job_id,
name='lightning_logs'
)
self.logger.rank = 0
elif logger is False:
self.logger = None
else:
self.logger = logger
self.logger.rank = 0