2019-06-28 22:35:21 +00:00
### Template model definition
In 99% of cases you want to just copy [this template ](https://github.com/williamFalcon/pytorch-lightning/blob/master/examples/new_project_templates/lightning_module_template.py ) to start a new lightningModule and change the core of what your model is actually trying to do.
```bash
# get a copy of the module template
wget https://github.com/williamFalcon/pytorch-lightning/blob/master/examples/new_project_templates/lightning_module_template.py
```
---
### Trainer Example
** \_\_main__ function**
Normally, we want to let the \_\_main__ function start the training.
Inside the main we parse training arguments with whatever hyperparameters we want. Your LightningModule will have a
chance to add hyperparameters.
```{.python}
2019-06-28 22:00:57 +00:00
from test_tube import HyperOptArgumentParser
2019-06-28 22:35:21 +00:00
if __name__ == '__main__':
2019-03-31 20:29:50 +00:00
2019-06-28 22:35:21 +00:00
# use default args given by lightning
root_dir = os.path.split(os.path.dirname(sys.modules['__main__'].__file__))[0]
parent_parser = HyperOptArgumentParser(strategy='random_search', add_help=False)
add_default_args(parent_parser, root_dir)
2019-03-31 20:29:50 +00:00
2019-06-28 22:35:21 +00:00
# allow model to overwrite or extend args
parser = ExampleModel.add_model_specific_args(parent_parser)
hyperparams = parser.parse_args()
# train model
main(hyperparams)
```
**Main Function**
The main function is your entry into the program. This is where you init your model, checkpoint directory, and launch the training.
The main function should have 3 arguments:
- hparams: a configuration of hyperparameters.
- slurm_manager: Slurm cluster manager object (can be None)
- dict: for you to return any values you want (useful in meta-learning, otherwise set to _)
```{}
def main(hparams, cluster, results_dict):
2019-03-31 20:29:50 +00:00
"""
2019-06-28 22:35:21 +00:00
Main training routine specific for this project
:param hparams:
:return:
2019-03-31 20:29:50 +00:00
"""
2019-06-28 22:35:21 +00:00
# init experiment
log_dir = os.path.dirname(os.path.realpath(__file__))
exp = Experiment(
name='test_tube_exp',
debug=True,
save_dir=log_dir,
version=0,
autosave=False,
description='test demo'
)
# set the hparams for the experiment
exp.argparse(hparams)
exp.save()
# build model
model = MyLightningModule(hparams)
# callbacks
early_stop = EarlyStopping(
monitor=hparams.early_stop_metric,
patience=hparams.early_stop_patience,
verbose=True,
mode=hparams.early_stop_mode
)
model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name, exp.version)
checkpoint = ModelCheckpoint(
filepath=model_save_path,
save_function=None,
save_best_only=True,
verbose=True,
monitor=hparams.model_save_monitor_value,
mode=hparams.model_save_monitor_mode
)
# configure trainer
trainer = Trainer(
experiment=exp,
cluster=cluster,
checkpoint_callback=checkpoint,
early_stop_callback=early_stop,
)
# train model
trainer.fit(model)
```
The __main__ function will start training on your **main** function. If you use the HyperParameterOptimizer
in hyper parameter optimization mode, this main function will get one set of hyperparameters. If you use it as a simple
argument parser you get the default arguments in the argument parser.
So, calling main(hyperparams) runs the model with the default argparse arguments.
```{.python}
main(hyperparams)
```
---
#### CPU hyperparameter search
```{.python}
# run a grid search over 20 hyperparameter combinations.
hyperparams.optimize_parallel_cpu(
main_local,
nb_trials=20,
nb_workers=1
)
```
---
#### Hyperparameter search on a single or multiple GPUs
```{.python}
# run a grid search over 20 hyperparameter combinations.
hyperparams.optimize_parallel_gpu(
main_local,
nb_trials=20,
nb_workers=1,
gpus=[0,1,2,3]
)
```
---
#### Hyperparameter search on a SLURM HPC cluster
```{.python}
def optimize_on_cluster(hyperparams):
# enable cluster training
cluster = SlurmCluster(
hyperparam_optimizer=hyperparams,
log_path=hyperparams.tt_save_path,
test_tube_exp_name=hyperparams.tt_name
)
# email for cluster coms
cluster.notify_job_status(email='add_email_here', on_done=True, on_fail=True)
# configure cluster
cluster.per_experiment_nb_gpus = hyperparams.per_experiment_nb_gpus
cluster.job_time = '48:00:00'
cluster.gpu_type = '1080ti'
cluster.memory_mb_per_node = 48000
# any modules for code to run in env
cluster.add_command('source activate pytorch_lightning')
# name of exp
job_display_name = hyperparams.tt_name.split('_')[0]
job_display_name = job_display_name[0:3]
# run hopt
print('submitting jobs...')
cluster.optimize_parallel_cluster_gpu(
main,
nb_trials=hyperparams.nb_hopt_trials,
job_name=job_display_name
)
# run cluster hyperparameter search
optimize_on_cluster(hyperparams)
```