2020-10-13 11:18:07 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2020-12-04 21:42:23 +00:00
|
|
|
from typing import Any, Optional
|
2020-10-10 16:31:00 +00:00
|
|
|
|
|
|
|
import torch
|
2020-12-04 21:42:23 +00:00
|
|
|
|
2020-10-10 16:31:00 +00:00
|
|
|
from pytorch_lightning.metrics.metric import Metric
|
2020-12-04 21:42:23 +00:00
|
|
|
from pytorch_lightning.metrics.utils import METRIC_EPS, _input_format_classification_one_hot
|
2020-10-10 16:31:00 +00:00
|
|
|
|
|
|
|
|
|
|
|
class Precision(Metric):
|
2020-11-25 08:05:30 +00:00
|
|
|
r"""
|
|
|
|
Computes `Precision <https://en.wikipedia.org/wiki/Precision_and_recall>`_:
|
|
|
|
|
|
|
|
.. math:: \text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}}
|
2020-10-10 16:31:00 +00:00
|
|
|
|
2020-11-25 08:05:30 +00:00
|
|
|
Where :math:`\text{TP}` and :math:`\text{FP}` represent the number of true positives and
|
|
|
|
false positives respecitively. Works with binary, multiclass, and
|
|
|
|
multilabel data. Accepts logits from a model output or integer class
|
|
|
|
values in prediction. Works with multi-dimensional preds and target.
|
2020-10-10 16:31:00 +00:00
|
|
|
|
|
|
|
Forward accepts
|
|
|
|
|
|
|
|
- ``preds`` (float or long tensor): ``(N, ...)`` or ``(N, C, ...)`` where C is the number of classes
|
|
|
|
- ``target`` (long tensor): ``(N, ...)``
|
|
|
|
|
|
|
|
If preds and target are the same shape and preds is a float tensor, we use the ``self.threshold`` argument.
|
|
|
|
This is the case for binary and multi-label logits.
|
|
|
|
|
|
|
|
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_classes: Number of classes in the dataset.
|
|
|
|
beta: Beta coefficient in the F measure.
|
|
|
|
threshold:
|
|
|
|
Threshold value for binary or multi-label logits. default: 0.5
|
|
|
|
|
|
|
|
average:
|
|
|
|
* `'micro'` computes metric globally
|
|
|
|
* `'macro'` computes metric for each class and then takes the mean
|
|
|
|
|
|
|
|
multilabel: If predictions are from multilabel classification.
|
|
|
|
compute_on_step:
|
|
|
|
Forward only calls ``update()`` and return None if this is set to False. default: True
|
|
|
|
dist_sync_on_step:
|
|
|
|
Synchronize metric state across processes at each ``forward()``
|
|
|
|
before returning the value at the step. default: False
|
|
|
|
process_group:
|
|
|
|
Specify the process group on which synchronization is called. default: None (which selects the entire world)
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
>>> from pytorch_lightning.metrics import Precision
|
|
|
|
>>> target = torch.tensor([0, 1, 2, 0, 1, 2])
|
|
|
|
>>> preds = torch.tensor([0, 2, 1, 0, 0, 1])
|
|
|
|
>>> precision = Precision(num_classes=3)
|
|
|
|
>>> precision(preds, target)
|
|
|
|
tensor(0.3333)
|
|
|
|
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
num_classes: int = 1,
|
|
|
|
threshold: float = 0.5,
|
|
|
|
average: str = 'micro',
|
|
|
|
multilabel: bool = False,
|
|
|
|
compute_on_step: bool = True,
|
|
|
|
dist_sync_on_step: bool = False,
|
|
|
|
process_group: Optional[Any] = None,
|
|
|
|
):
|
|
|
|
super().__init__(
|
|
|
|
compute_on_step=compute_on_step,
|
|
|
|
dist_sync_on_step=dist_sync_on_step,
|
|
|
|
process_group=process_group,
|
|
|
|
)
|
|
|
|
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.threshold = threshold
|
|
|
|
self.average = average
|
|
|
|
self.multilabel = multilabel
|
|
|
|
|
|
|
|
assert self.average in ('micro', 'macro'), \
|
|
|
|
"average passed to the function must be either `micro` or `macro`"
|
|
|
|
|
|
|
|
self.add_state("true_positives", default=torch.zeros(num_classes), dist_reduce_fx="sum")
|
|
|
|
self.add_state("predicted_positives", default=torch.zeros(num_classes), dist_reduce_fx="sum")
|
|
|
|
|
|
|
|
def update(self, preds: torch.Tensor, target: torch.Tensor):
|
2020-11-23 08:44:35 +00:00
|
|
|
preds, target = _input_format_classification_one_hot(
|
|
|
|
self.num_classes, preds, target, self.threshold, self.multilabel
|
|
|
|
)
|
2020-10-10 16:31:00 +00:00
|
|
|
|
|
|
|
# multiply because we are counting (1, 1) pair for true positives
|
|
|
|
self.true_positives += torch.sum(preds * target, dim=1)
|
|
|
|
self.predicted_positives += torch.sum(preds, dim=1)
|
|
|
|
|
|
|
|
def compute(self):
|
|
|
|
if self.average == 'micro':
|
|
|
|
return self.true_positives.sum().float() / (self.predicted_positives.sum() + METRIC_EPS)
|
|
|
|
elif self.average == 'macro':
|
|
|
|
return (self.true_positives.float() / (self.predicted_positives + METRIC_EPS)).mean()
|
|
|
|
|
|
|
|
|
|
|
|
class Recall(Metric):
|
2020-11-25 08:05:30 +00:00
|
|
|
r"""
|
|
|
|
Computes `Recall <https://en.wikipedia.org/wiki/Precision_and_recall>`_:
|
|
|
|
|
|
|
|
.. math:: \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}}
|
2020-10-10 16:31:00 +00:00
|
|
|
|
2020-11-25 08:05:30 +00:00
|
|
|
Where :math:`\text{TP}` and :math:`\text{FN}` represent the number of true positives and
|
|
|
|
false negatives respecitively. Works with binary, multiclass, and
|
|
|
|
multilabel data. Accepts logits from a model output or integer class
|
|
|
|
values in prediction. Works with multi-dimensional preds and target.
|
2020-10-10 16:31:00 +00:00
|
|
|
|
|
|
|
Forward accepts
|
|
|
|
|
|
|
|
- ``preds`` (float or long tensor): ``(N, ...)`` or ``(N, C, ...)`` where C is the number of classes
|
|
|
|
- ``target`` (long tensor): ``(N, ...)``
|
|
|
|
|
|
|
|
If preds and target are the same shape and preds is a float tensor, we use the ``self.threshold`` argument.
|
|
|
|
This is the case for binary and multi-label logits.
|
|
|
|
|
|
|
|
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_classes: Number of classes in the dataset.
|
|
|
|
beta: Beta coefficient in the F measure.
|
|
|
|
threshold:
|
|
|
|
Threshold value for binary or multi-label logits. default: 0.5
|
|
|
|
|
|
|
|
average:
|
|
|
|
* `'micro'` computes metric globally
|
|
|
|
* `'macro'` computes metric for each class and then takes the mean
|
|
|
|
|
|
|
|
multilabel: If predictions are from multilabel classification.
|
|
|
|
compute_on_step:
|
|
|
|
Forward only calls ``update()`` and return None if this is set to False. default: True
|
|
|
|
dist_sync_on_step:
|
|
|
|
Synchronize metric state across processes at each ``forward()``
|
|
|
|
before returning the value at the step. default: False
|
|
|
|
process_group:
|
|
|
|
Specify the process group on which synchronization is called. default: None (which selects the entire world)
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
>>> from pytorch_lightning.metrics import Recall
|
|
|
|
>>> target = torch.tensor([0, 1, 2, 0, 1, 2])
|
|
|
|
>>> preds = torch.tensor([0, 2, 1, 0, 0, 1])
|
|
|
|
>>> recall = Recall(num_classes=3)
|
|
|
|
>>> recall(preds, target)
|
|
|
|
tensor(0.3333)
|
|
|
|
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
num_classes: int = 1,
|
|
|
|
threshold: float = 0.5,
|
|
|
|
average: str = 'micro',
|
|
|
|
multilabel: bool = False,
|
|
|
|
compute_on_step: bool = True,
|
|
|
|
dist_sync_on_step: bool = False,
|
|
|
|
process_group: Optional[Any] = None,
|
|
|
|
):
|
|
|
|
super().__init__(
|
|
|
|
compute_on_step=compute_on_step,
|
|
|
|
dist_sync_on_step=dist_sync_on_step,
|
|
|
|
process_group=process_group,
|
|
|
|
)
|
|
|
|
|
|
|
|
self.num_classes = num_classes
|
|
|
|
self.threshold = threshold
|
|
|
|
self.average = average
|
|
|
|
self.multilabel = multilabel
|
|
|
|
|
|
|
|
assert self.average in ('micro', 'macro'), \
|
|
|
|
"average passed to the function must be either `micro` or `macro`"
|
|
|
|
|
|
|
|
self.add_state("true_positives", default=torch.zeros(num_classes), dist_reduce_fx="sum")
|
|
|
|
self.add_state("actual_positives", default=torch.zeros(num_classes), dist_reduce_fx="sum")
|
|
|
|
|
|
|
|
def update(self, preds: torch.Tensor, target: torch.Tensor):
|
|
|
|
"""
|
|
|
|
Update state with predictions and targets.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
preds: Predictions from model
|
|
|
|
target: Ground truth values
|
|
|
|
"""
|
2020-11-23 08:44:35 +00:00
|
|
|
preds, target = _input_format_classification_one_hot(
|
|
|
|
self.num_classes, preds, target, self.threshold, self.multilabel
|
|
|
|
)
|
2020-10-10 16:31:00 +00:00
|
|
|
|
|
|
|
# multiply because we are counting (1, 1) pair for true positives
|
|
|
|
self.true_positives += torch.sum(preds * target, dim=1)
|
|
|
|
self.actual_positives += torch.sum(target, dim=1)
|
|
|
|
|
|
|
|
def compute(self):
|
|
|
|
"""
|
2021-01-05 13:15:06 +00:00
|
|
|
Computes recall over state.
|
2020-10-10 16:31:00 +00:00
|
|
|
"""
|
|
|
|
if self.average == 'micro':
|
|
|
|
return self.true_positives.sum().float() / (self.actual_positives.sum() + METRIC_EPS)
|
|
|
|
elif self.average == 'macro':
|
|
|
|
return (self.true_positives.float() / (self.actual_positives + METRIC_EPS)).mean()
|