lightning/docs/source-pytorch/ecosystem/flash.rst

79 lines
2.8 KiB
ReStructuredText
Raw Normal View History

docs refactor 3/n (#12795) * updated titles + css * updated titles + css * levels structure * levels structure * levels structure * adding level indexes * finished intro guide layout * finished intro guide layout * general titles * general titles * added movie * added movie * finished 15 mins * levels * added core levels * added core levels * fixed api reference on the left * gpu guides * gpu guides * gpu guides * gpu guides * precision * hpu guide * added ipu * added ipu * added ipu * added ckpt docs * finished basic logging * intermediate * intermediate * intermediate * fixed * fixed margins * fixed margins * fixed margins * fixed margins * fixed margins * fixed margins * fixed margins * fixed margins * fixed margins * added logger stuff * added logger stuff * added logger stuff * added logger stuff * added logger stuff * ic * added inconsolata * added inconsolata * added inconsolata * added inconsolata * added inconsolata * added inconsolata * added inconsolata * updated menu * added basic cloud docs * added basic cloud docs * added basic cloud docs * added basic cloud docs * ic * ic * ic * ic * ic * ic * ic * ic * ic * ic * ic * ic * added demos folder * added demos folder * added demos folder * added demos folder * added demos folder * added demos folder * twocolumns directive * twocols * twocols * registry * registry * registry * registry * registry * registry * registry * registry * registry * registry * registry * registry * registry * registry * registry * registry * registry * registry * registry * cleaning up * cleaning up * cleaning up * cleaning up * cleaning up * cleaning up * cleaning up * cleaning up * cleaning up * updated titles + css * levels structure * adding level indexes * finished intro guide layout * general titles * added movie * finished 15 mins * levels * added core levels * fixed api reference on the left * gpu guides * precision * hpu guide * added ipu * added ckpt docs * finished basic logging * intermediate * fixed margins * added logger stuff * ic * added inconsolata * updated menu * added basic cloud docs * ic * added demos folder * twocolumns directive * registry * cleaning up * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * deconflict * deconflict * deconflict * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add testsetup sections wherever needed; fix errors in building docs * pre-commit fixes * Fix duplicate label * minor nit with pre-commit * Fix labels * More changes... * require * debug & cli * prec & model & visu * fix references * fix references * fix refs * fix refs - model_parallel * fix references * prune testsetup with global * refs in index * Fix duplicate label errors * Update orphan docs * Update orphan docs * Update orphan docs * fix links * Fix genindex and search index * fix refs * fix refs * Fix index rst related issues * fix refs * inc to rst * Fix links ref * fix more references * fix refs * deconflict * errors * errors * errors * fix refs * fix refs * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix warnings * Fix LightningCLI errors * Fix LightningCLI errors * Fix LightningCLI errors * Fix LightningCLI errors * fix doc build * Duplicate Label fix (docs) (#12800) Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * ignore typing in demo folder * Ignore demos for mypy Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Kushashwa Ravi Shrimali <kushashwaravishrimali@gmail.com> Co-authored-by: Jirka <jirka.borovec@seznam.cz> Co-authored-by: rohitgr7 <rohitgr1998@gmail.com> Co-authored-by: Kaushik B <kaushikbokka@gmail.com> Co-authored-by: otaj <ota@grid.ai>
2022-04-19 18:15:47 +00:00
:orphan:
Lightning Flash
===============
`Lightning Flash <https://lightning-flash.readthedocs.io/en/stable/>`_ is a high-level deep learning framework for fast prototyping, baselining, fine-tuning, and solving deep learning problems.
Flash makes complex AI recipes for over 15 tasks across 7 data domains accessible to all.
It is built for beginners with a simple API that requires very little deep learning background, and for data scientists, Kagglers, applied ML practitioners, and deep learning researchers that
want a quick way to get a deep learning baseline with advanced features PyTorch Lightning offers.
.. code-block:: bash
pip install lightning-flash
-----------------
*********************************
Using Lightning Flash in 3 Steps!
*********************************
1. Load your Data
-----------------
All data loading in Flash is performed via a ``from_*`` classmethod of a ``DataModule``.
Which ``DataModule`` to use and which ``from_*`` methods are available depends on the task you want to perform.
For example, for image segmentation where your data is stored in folders, you would use the ``SemanticSegmentationData``'s `from_folders <https://lightning-flash.readthedocs.io/en/latest/reference/semantic_segmentation.html#from-folders>`_ method:
.. code-block:: python
from flash.image import SemanticSegmentationData
dm = SemanticSegmentationData.from_folders(
train_folder="data/CameraRGB",
train_target_folder="data/CameraSeg",
val_split=0.1,
image_size=(256, 256),
num_classes=21,
)
------------
2. Configure your Model
-----------------------
Our tasks come loaded with pre-trained backbones and (where applicable) heads.
You can view the available backbones to use with your task using `available_backbones <https://lightning-flash.readthedocs.io/en/latest/general/backbones.html>`_.
Once you've chosen, create the model:
.. code-block:: python
from flash.image import SemanticSegmentation
print(SemanticSegmentation.available_heads())
# ['deeplabv3', 'deeplabv3plus', 'fpn', ..., 'unetplusplus']
print(SemanticSegmentation.available_backbones("fpn"))
# ['densenet121', ..., 'xception'] # + 113 models
print(SemanticSegmentation.available_pretrained_weights("efficientnet-b0"))
# ['imagenet', 'advprop']
model = SemanticSegmentation(head="fpn", backbone="efficientnet-b0", pretrained="advprop", num_classes=dm.num_classes)
------------
3. Finetune!
------------
.. code-block:: python
from flash import Trainer
trainer = Trainer(max_epochs=3)
trainer.finetune(model, datamodule=datamodule, strategy="freeze")
trainer.save_checkpoint("semantic_segmentation_model.pt")
To learn more about Lightning Flash, please refer to the `Lightning Flash documentation <https://lightning-flash.readthedocs.io/en/latest/>`_.