70 lines
2.7 KiB
Python
70 lines
2.7 KiB
Python
|
# Copyright The PyTorch Lightning team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
from pytorch_lightning import Trainer
|
||
|
from pytorch_lightning.callbacks import BasePredictionWriter
|
||
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
||
|
from tests.helpers import BoringModel
|
||
|
|
||
|
|
||
|
def test_prediction_writer(tmpdir):
|
||
|
|
||
|
class CustomPredictionWriter(BasePredictionWriter):
|
||
|
|
||
|
def __init__(self, writer_interval: str):
|
||
|
super().__init__(writer_interval)
|
||
|
|
||
|
self.write_on_batch_end_called = False
|
||
|
self.write_on_epoch_end_called = False
|
||
|
|
||
|
def write_on_batch_end(self, *args, **kwargs):
|
||
|
self.write_on_batch_end_called = True
|
||
|
|
||
|
def write_on_epoch_end(self, *args, **kwargs):
|
||
|
self.write_on_epoch_end_called = True
|
||
|
|
||
|
with pytest.raises(MisconfigurationException, match=r"`write_interval` should be one of \['batch"):
|
||
|
CustomPredictionWriter("something")
|
||
|
|
||
|
model = BoringModel()
|
||
|
cb = CustomPredictionWriter("batch_and_epoch")
|
||
|
trainer = Trainer(limit_predict_batches=4, callbacks=cb)
|
||
|
results = trainer.predict(model, dataloaders=model.train_dataloader())
|
||
|
assert len(results) == 4
|
||
|
assert cb.write_on_batch_end_called
|
||
|
assert cb.write_on_epoch_end_called
|
||
|
|
||
|
cb = CustomPredictionWriter("batch_and_epoch")
|
||
|
trainer = Trainer(limit_predict_batches=4, callbacks=cb)
|
||
|
results = trainer.predict(model, dataloaders=model.train_dataloader(), return_predictions=False)
|
||
|
assert cb.write_on_batch_end_called
|
||
|
assert cb.write_on_epoch_end_called
|
||
|
assert results == 1
|
||
|
|
||
|
cb = CustomPredictionWriter("batch")
|
||
|
trainer = Trainer(limit_predict_batches=4, callbacks=cb)
|
||
|
results = trainer.predict(model, dataloaders=model.train_dataloader(), return_predictions=False)
|
||
|
assert cb.write_on_batch_end_called
|
||
|
assert not cb.write_on_epoch_end_called
|
||
|
assert results == 1
|
||
|
|
||
|
cb = CustomPredictionWriter("epoch")
|
||
|
trainer = Trainer(limit_predict_batches=4, callbacks=cb)
|
||
|
results = trainer.predict(model, dataloaders=model.train_dataloader(), return_predictions=False)
|
||
|
assert not cb.write_on_batch_end_called
|
||
|
assert cb.write_on_epoch_end_called
|
||
|
assert results == 1
|