2020-02-17 21:01:20 +00:00
|
|
|
TPU support
|
|
|
|
===========
|
|
|
|
|
|
|
|
Lightning supports running on TPUs. At this moment, TPUs are only available
|
|
|
|
on Google Cloud (GCP). For more information on TPUs
|
|
|
|
`watch this video <https://www.youtube.com/watch?v=kPMpmcl_Pyw>`_.
|
|
|
|
|
2020-03-17 00:50:14 +00:00
|
|
|
---------------
|
|
|
|
|
2020-02-17 21:01:20 +00:00
|
|
|
Live demo
|
|
|
|
----------
|
|
|
|
Check out this `Google Colab <https://colab.research.google.com/drive/1-_LKx4HwAxl5M6xPJmqAAu444LTDQoa3>`_ to see how to train MNIST on TPUs.
|
|
|
|
|
2020-03-17 00:50:14 +00:00
|
|
|
---------------
|
|
|
|
|
2020-02-17 21:01:20 +00:00
|
|
|
TPU Terminology
|
|
|
|
---------------
|
|
|
|
A TPU is a Tensor processing unit. Each TPU has 8 cores where each
|
|
|
|
core is optimized for 128x128 matrix multiplies. In general, a single
|
|
|
|
TPU is about as fast as 5 V100 GPUs!
|
|
|
|
|
|
|
|
A TPU pod hosts many TPUs on it. Currently, TPU pod v2 has 2048 cores!
|
|
|
|
You can request a full pod from Google cloud or a "slice" which gives you
|
|
|
|
some subset of those 2048 cores.
|
|
|
|
|
2020-03-17 00:50:14 +00:00
|
|
|
---------------
|
|
|
|
|
2020-02-17 21:01:20 +00:00
|
|
|
How to access TPUs
|
|
|
|
-------------------
|
|
|
|
To access TPUs there are two main ways.
|
|
|
|
|
|
|
|
1. Using google colab.
|
|
|
|
2. Using Google Cloud (GCP).
|
|
|
|
|
2020-03-17 00:50:14 +00:00
|
|
|
---------------
|
|
|
|
|
2020-02-17 21:01:20 +00:00
|
|
|
Colab TPUs
|
|
|
|
-----------
|
|
|
|
Colab is like a jupyter notebook with a free GPU or TPU
|
|
|
|
hosted on GCP.
|
|
|
|
|
|
|
|
To get a TPU on colab, follow these steps:
|
|
|
|
|
2020-03-20 19:49:01 +00:00
|
|
|
1. Go to `https://colab.research.google.com/ <https://colab.research.google.com/>`_.
|
|
|
|
|
|
|
|
2. Click "new notebook" (bottom right of pop-up).
|
|
|
|
|
|
|
|
3. Click runtime > change runtime settings. Select Python 3, and hardware accelerator "TPU".
|
|
|
|
This will give you a TPU with 8 cores.
|
|
|
|
|
|
|
|
4. Next, insert this code into the first cell and execute.
|
|
|
|
This will install the xla library that interfaces between PyTorch and the TPU.
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import collections
|
|
|
|
from datetime import datetime, timedelta
|
|
|
|
import os
|
|
|
|
import requests
|
|
|
|
import threading
|
|
|
|
|
|
|
|
_VersionConfig = collections.namedtuple('_VersionConfig', 'wheels,server')
|
|
|
|
VERSION = "xrt==1.15.0" #@param ["xrt==1.15.0", "torch_xla==nightly"]
|
|
|
|
CONFIG = {
|
|
|
|
'xrt==1.15.0': _VersionConfig('1.15', '1.15.0'),
|
|
|
|
'torch_xla==nightly': _VersionConfig('nightly', 'XRT-dev{}'.format(
|
|
|
|
(datetime.today() - timedelta(1)).strftime('%Y%m%d'))),
|
|
|
|
}[VERSION]
|
|
|
|
DIST_BUCKET = 'gs://tpu-pytorch/wheels'
|
|
|
|
TORCH_WHEEL = 'torch-{}-cp36-cp36m-linux_x86_64.whl'.format(CONFIG.wheels)
|
|
|
|
TORCH_XLA_WHEEL = 'torch_xla-{}-cp36-cp36m-linux_x86_64.whl'.format(CONFIG.wheels)
|
|
|
|
TORCHVISION_WHEEL = 'torchvision-{}-cp36-cp36m-linux_x86_64.whl'.format(CONFIG.wheels)
|
|
|
|
|
|
|
|
# Update TPU XRT version
|
|
|
|
def update_server_xrt():
|
|
|
|
print('Updating server-side XRT to {} ...'.format(CONFIG.server))
|
|
|
|
url = 'http://{TPU_ADDRESS}:8475/requestversion/{XRT_VERSION}'.format(
|
|
|
|
TPU_ADDRESS=os.environ['COLAB_TPU_ADDR'].split(':')[0],
|
|
|
|
XRT_VERSION=CONFIG.server,
|
|
|
|
)
|
|
|
|
print('Done updating server-side XRT: {}'.format(requests.post(url)))
|
|
|
|
|
|
|
|
update = threading.Thread(target=update_server_xrt)
|
|
|
|
update.start()
|
|
|
|
|
|
|
|
.. code-block::
|
|
|
|
|
|
|
|
# Install Colab TPU compat PyTorch/TPU wheels and dependencies
|
|
|
|
!pip uninstall -y torch torchvision
|
|
|
|
!gsutil cp "$DIST_BUCKET/$TORCH_WHEEL" .
|
|
|
|
!gsutil cp "$DIST_BUCKET/$TORCH_XLA_WHEEL" .
|
|
|
|
!gsutil cp "$DIST_BUCKET/$TORCHVISION_WHEEL" .
|
|
|
|
!pip install "$TORCH_WHEEL"
|
|
|
|
!pip install "$TORCH_XLA_WHEEL"
|
|
|
|
!pip install "$TORCHVISION_WHEEL"
|
|
|
|
!sudo apt-get install libomp5
|
|
|
|
update.join()
|
|
|
|
|
|
|
|
5. Once the above is done, install PyTorch Lightning (v 0.7.0+).
|
|
|
|
|
|
|
|
.. code-block::
|
|
|
|
|
|
|
|
!pip install pytorch-lightning
|
2020-02-17 21:01:20 +00:00
|
|
|
|
|
|
|
6. Then set up your LightningModule as normal.
|
|
|
|
|
2020-03-17 00:50:14 +00:00
|
|
|
---------------
|
|
|
|
|
|
|
|
DistributedSamplers
|
|
|
|
-------------------
|
|
|
|
Lightning automatically inserts the correct samplers - no need to do this yourself!
|
|
|
|
|
|
|
|
Usually, with TPUs (and DDP), you would need to define a DistributedSampler to move the right
|
|
|
|
chunk of data to the appropriate TPU. As mentioned, this is not needed in Lightning
|
|
|
|
|
|
|
|
.. note:: Don't add distributedSamplers. Lightning does this automatically
|
|
|
|
|
|
|
|
If for some reason you still need to, this is how to construct the sampler
|
|
|
|
for TPU use
|
2020-02-17 21:01:20 +00:00
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
|
|
|
|
def train_dataloader(self):
|
|
|
|
dataset = MNIST(
|
|
|
|
os.getcwd(),
|
|
|
|
train=True,
|
|
|
|
download=True,
|
|
|
|
transform=transforms.ToTensor()
|
|
|
|
)
|
|
|
|
|
|
|
|
# required for TPU support
|
|
|
|
sampler = None
|
|
|
|
if use_tpu:
|
|
|
|
sampler = torch.utils.data.distributed.DistributedSampler(
|
|
|
|
dataset,
|
|
|
|
num_replicas=xm.xrt_world_size(),
|
|
|
|
rank=xm.get_ordinal(),
|
|
|
|
shuffle=True
|
|
|
|
)
|
|
|
|
|
|
|
|
loader = DataLoader(
|
|
|
|
dataset,
|
|
|
|
sampler=sampler,
|
|
|
|
batch_size=32
|
|
|
|
)
|
|
|
|
|
|
|
|
return loader
|
|
|
|
|
2020-03-20 19:49:01 +00:00
|
|
|
Configure the number of TPU cores in the trainer. You can only choose 1 or 8.
|
|
|
|
To use a full TPU pod skip to the TPU pod section.
|
2020-02-17 21:01:20 +00:00
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
|
|
|
|
my_model = MyLightningModule()
|
|
|
|
trainer = pl.Trainer(num_tpu_cores=8)
|
|
|
|
trainer.fit(my_model)
|
|
|
|
|
|
|
|
That's it! Your model will train on all 8 TPU cores.
|
|
|
|
|
2020-03-17 00:50:14 +00:00
|
|
|
---------------
|
|
|
|
|
|
|
|
Distributed Backend with TPU
|
|
|
|
----------------------------
|
|
|
|
The ```distributed_backend``` option used for GPUs does not apply to TPUs.
|
|
|
|
TPUs work in DDP mode by default (distributing over each core)
|
|
|
|
|
|
|
|
---------------
|
|
|
|
|
2020-02-17 21:01:20 +00:00
|
|
|
TPU Pod
|
|
|
|
--------
|
|
|
|
To train on more than 8 cores, your code actually doesn't change!
|
|
|
|
All you need to do is submit the following command:
|
|
|
|
|
|
|
|
.. code-block:: bash
|
2020-02-17 22:52:42 +00:00
|
|
|
|
2020-02-17 21:01:20 +00:00
|
|
|
$ python -m torch_xla.distributed.xla_dist
|
|
|
|
--tpu=$TPU_POD_NAME
|
|
|
|
--conda-env=torch-xla-nightly
|
|
|
|
-- python /usr/share/torch-xla-0.5/pytorch/xla/test/test_train_imagenet.py --fake_data
|
|
|
|
|
2020-03-17 00:50:14 +00:00
|
|
|
---------------
|
|
|
|
|
2020-02-17 21:01:20 +00:00
|
|
|
16 bit precision
|
|
|
|
-----------------
|
|
|
|
Lightning also supports training in 16-bit precision with TPUs.
|
|
|
|
By default, TPU training will use 32-bit precision. To enable 16-bit, also
|
|
|
|
set the 16-bit flag.
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
|
|
|
|
my_model = MyLightningModule()
|
|
|
|
trainer = pl.Trainer(num_tpu_cores=8, precision=16)
|
|
|
|
trainer.fit(my_model)
|
|
|
|
|
|
|
|
Under the hood the xla library will use the `bfloat16 type <https://en.wikipedia.org/wiki/Bfloat16_floating-point_format>`_.
|
|
|
|
|
2020-03-17 00:50:14 +00:00
|
|
|
---------------
|
2020-02-17 21:01:20 +00:00
|
|
|
|
|
|
|
About XLA
|
|
|
|
----------
|
|
|
|
XLA is the library that interfaces PyTorch with the TPUs.
|
|
|
|
For more information check out `XLA <https://github.com/pytorch/xla>`_.
|
2020-02-25 03:30:53 +00:00
|
|
|
|
|
|
|
Guide for `troubleshooting XLA <https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md>`_
|