lightning/tests/core/test_metric_result_integrat...

142 lines
4.3 KiB
Python
Raw Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import tests.helpers.utils as tutils
from pytorch_lightning.core.step_result import Result
from pytorch_lightning.metrics import Metric
class DummyMetric(Metric):
def __init__(self):
super().__init__()
self.add_state("x", torch.tensor(0), dist_reduce_fx="sum")
def update(self, x):
self.x += x
def compute(self):
return self.x
def _setup_ddp(rank, worldsize):
import os
os.environ["MASTER_ADDR"] = "localhost"
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=worldsize)
def _ddp_test_fn(rank, worldsize):
_setup_ddp(rank, worldsize)
2020-12-21 05:40:55 +00:00
torch.tensor([1.0])
metric_a = DummyMetric()
metric_b = DummyMetric()
metric_c = DummyMetric()
# dist_sync_on_step is False by default
result = Result()
for epoch in range(3):
cumulative_sum = 0
for i in range(5):
metric_a(i)
metric_b(i)
metric_c(i)
cumulative_sum += i
result.log('a', metric_a, on_step=True, on_epoch=True)
result.log('b', metric_b, on_step=False, on_epoch=True)
result.log('c', metric_c, on_step=True, on_epoch=False)
batch_log = result.get_batch_log_metrics()
batch_expected = {"a_step": i, "a": i, "c": i}
assert set(batch_log.keys()) == set(batch_expected.keys())
for k in batch_expected.keys():
assert batch_expected[k] == batch_log[k]
epoch_log = result.get_epoch_log_metrics()
# assert metric state reset to default values
assert metric_a.x == metric_a._defaults['x']
assert metric_b.x == metric_b._defaults['x']
assert metric_c.x == metric_c._defaults['x']
epoch_expected = {"b": cumulative_sum * worldsize, "a_epoch": cumulative_sum * worldsize}
assert set(epoch_log.keys()) == set(epoch_expected.keys())
for k in epoch_expected.keys():
assert epoch_expected[k] == epoch_log[k]
@pytest.mark.skipif(sys.platform == "win32", reason="DDP not available on windows")
def test_result_reduce_ddp():
"""Make sure result logging works with DDP"""
tutils.reset_seed()
tutils.set_random_master_port()
worldsize = 2
mp.spawn(_ddp_test_fn, args=(worldsize, ), nprocs=worldsize)
def test_result_metric_integration():
metric_a = DummyMetric()
metric_b = DummyMetric()
metric_c = DummyMetric()
result = Result()
for epoch in range(3):
cumulative_sum = 0
for i in range(5):
metric_a(i)
metric_b(i)
metric_c(i)
cumulative_sum += i
result.log('a', metric_a, on_step=True, on_epoch=True)
result.log('b', metric_b, on_step=False, on_epoch=True)
result.log('c', metric_c, on_step=True, on_epoch=False)
batch_log = result.get_batch_log_metrics()
batch_expected = {"a_step": i, "a": i, "c": i}
assert set(batch_log.keys()) == set(batch_expected.keys())
for k in batch_expected.keys():
assert batch_expected[k] == batch_log[k]
epoch_log = result.get_epoch_log_metrics()
# assert metric state reset to default values
assert metric_a.x == metric_a._defaults['x']
assert metric_b.x == metric_b._defaults['x']
assert metric_c.x == metric_c._defaults['x']
epoch_expected = {"b": cumulative_sum, "a_epoch": cumulative_sum}
assert set(epoch_log.keys()) == set(epoch_expected.keys())
for k in epoch_expected.keys():
assert epoch_expected[k] == epoch_log[k]