2020-10-13 11:18:07 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2021-05-04 09:56:27 +00:00
|
|
|
import operator
|
2021-06-23 12:09:53 +00:00
|
|
|
import os
|
2020-06-16 02:03:40 +00:00
|
|
|
from collections import namedtuple
|
2021-06-23 12:09:53 +00:00
|
|
|
from unittest import mock
|
2020-08-11 23:28:37 +00:00
|
|
|
from unittest.mock import patch
|
2019-12-04 11:48:53 +00:00
|
|
|
|
2019-10-23 10:10:13 +00:00
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
2021-02-08 10:52:02 +00:00
|
|
|
import tests.helpers.pipelines as tpipes
|
|
|
|
import tests.helpers.utils as tutils
|
2019-10-23 10:10:13 +00:00
|
|
|
from pytorch_lightning import Trainer
|
2021-06-23 12:09:53 +00:00
|
|
|
from pytorch_lightning.plugins.environments import TorchElasticEnvironment
|
2020-09-08 22:46:42 +00:00
|
|
|
from pytorch_lightning.utilities import device_parser
|
2020-03-31 12:57:48 +00:00
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
2021-05-04 09:56:27 +00:00
|
|
|
from pytorch_lightning.utilities.imports import _compare_version
|
2021-02-09 10:10:52 +00:00
|
|
|
from tests.helpers import BoringModel
|
2021-02-23 22:08:46 +00:00
|
|
|
from tests.helpers.datamodules import ClassifDataModule
|
2021-03-05 20:39:52 +00:00
|
|
|
from tests.helpers.imports import Batch, Dataset, Example, Field, LabelField
|
2021-03-02 09:36:01 +00:00
|
|
|
from tests.helpers.runif import RunIf
|
2021-02-23 22:08:46 +00:00
|
|
|
from tests.helpers.simple_models import ClassificationModel
|
2020-08-06 14:58:51 +00:00
|
|
|
|
2021-05-04 09:56:27 +00:00
|
|
|
PL_VERSION_LT_1_5 = _compare_version("pytorch_lightning", operator.lt, "1.5")
|
2019-10-23 10:10:13 +00:00
|
|
|
PRETEND_N_OF_GPUS = 16
|
|
|
|
|
|
|
|
|
2021-03-02 08:03:32 +00:00
|
|
|
@RunIf(min_gpus=2)
|
2020-07-07 16:24:56 +00:00
|
|
|
def test_multi_gpu_none_backend(tmpdir):
|
|
|
|
"""Make sure when using multiple GPUs the user can't use `distributed_backend = None`."""
|
|
|
|
tutils.set_random_master_port()
|
2020-06-01 15:00:32 +00:00
|
|
|
trainer_options = dict(
|
|
|
|
default_root_dir=tmpdir,
|
2021-09-25 05:53:31 +00:00
|
|
|
enable_progress_bar=False,
|
2020-06-01 15:00:32 +00:00
|
|
|
max_epochs=1,
|
2020-07-07 16:24:56 +00:00
|
|
|
limit_train_batches=0.2,
|
|
|
|
limit_val_batches=0.2,
|
2020-12-09 08:18:23 +00:00
|
|
|
gpus=2,
|
2020-07-07 16:24:56 +00:00
|
|
|
)
|
|
|
|
|
2021-02-23 22:08:46 +00:00
|
|
|
dm = ClassifDataModule()
|
|
|
|
model = ClassificationModel()
|
|
|
|
tpipes.run_model_test(trainer_options, model, dm)
|
2020-07-07 16:24:56 +00:00
|
|
|
|
|
|
|
|
2021-03-02 08:03:32 +00:00
|
|
|
@RunIf(min_gpus=2)
|
2021-07-26 11:37:35 +00:00
|
|
|
@pytest.mark.parametrize("gpus", [1, [0], [1]])
|
2020-07-07 16:24:56 +00:00
|
|
|
def test_single_gpu_model(tmpdir, gpus):
|
|
|
|
"""Make sure single GPU works (DP mode)."""
|
|
|
|
trainer_options = dict(
|
|
|
|
default_root_dir=tmpdir,
|
2021-09-25 05:53:31 +00:00
|
|
|
enable_progress_bar=False,
|
2020-07-07 16:24:56 +00:00
|
|
|
max_epochs=1,
|
|
|
|
limit_train_batches=0.1,
|
|
|
|
limit_val_batches=0.1,
|
2021-07-26 11:37:35 +00:00
|
|
|
gpus=gpus,
|
2020-07-07 16:24:56 +00:00
|
|
|
)
|
|
|
|
|
2021-01-07 10:50:08 +00:00
|
|
|
model = BoringModel()
|
2020-07-07 16:24:56 +00:00
|
|
|
tpipes.run_model_test(trainer_options, model)
|
|
|
|
|
|
|
|
|
2019-10-23 10:10:13 +00:00
|
|
|
@pytest.fixture
|
|
|
|
def mocked_device_count(monkeypatch):
|
|
|
|
def device_count():
|
|
|
|
return PRETEND_N_OF_GPUS
|
|
|
|
|
PoC: Accelerator refactor (#5743)
* restoring the result from subprocess
* fix queue.get() order for results
* add missing "block_backward_sync" context manager
* add missing "block_backward_sync" context manager
* fix sync_batchnorm
* fix supported gpu-ids for tuple
* fix clip gradients and inf recursion
* accelerator selection: added cluster_environment plugin
* fix torchelastic test
* fix reduce early stopping decision for DDP
* fix tests: callbacks, conversion to lightning optimizer
* fix lightning optimizer does not pickle
* fix setting benchmark and deterministic option
* fix slurm amp test
* fix prepare_data test and determine node_rank
* fix retrieving last path when testing
* remove obsolete plugin argument
* fix test: test_trainer_config
* fix torchscript tests
* fix trainer.model access
* move properties
* fix test_transfer_batch_hook
* fix auto_select_gpus
* fix omegaconf test
* fix test that needs to simulate slurm ddp
* add horovod plugin
* fix test with named arguments
* clean up whitespace
* fix datamodules test
* remove old accelerators
* fix naming
* move old plugins
* move to plugins
* create precision subpackage
* create training_type subpackage
* fix all new import errors
* fix wrong arguments order passed to test
* fix LR finder
* Added sharded training type and amp plugin
* Move clip grad to precision plugin
* Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically
* Fix import issue, attempting to fix tests
* Fix initial test
* Reflect hook logic from master, should wrap model after move to device
* Optional state consolidation, since master has optimizers not wrapped
* change attribute for instance test
* reset optimizers
optimizers are not used in main process, so state would be wrong.
* legacy
* imports in accel
* legacy2
* trainer imports
* fix import errors after rebase
* move hook to new setup location
* provide unwrapping logic
* fix trainer callback system
* added ddp2 implementation
* fix imports .legacy
* move plugins
* restore legacy
* drop test.py from root
* add tpu accelerator and plugins
* fixes
* fix lightning optimizer merge
* reset bugreportmodel
* unwrapping
* step routing forward
* model access
* unwrap
* opt
* integrate distrib_type
* sync changes
* sync
* fixes
* add forgotten generators
* add missing logic
* update
* import
* missed imports
* import fixes
* isort
* mv f
* changelog
* format
* move helper to parallel plugin
* d
* add world size
* clean up
* duplicate
* activate ddp_sharded and tpu
* set nvidia flags
* remove unused colab var
* use_tpu <-> on_tpu attrs
* make some ddp_cpu and clusterplugin tests pass
* Ref/accelerator connector (#5742)
* final cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* connector cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* trainer cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* accelerator cleanup + missing logic in accelerator connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add missing changes to callbacks
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* reflect accelerator changes to lightning module
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* clean cluster envs
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* cleanup plugins
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add broadcasting
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* yapf
* remove plugin connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* plugins
* manual optimization
* update optimizer routing
* add rank to torchelastic
* fix memory mixed precision
* setstate on trainer for pickling in ddp spawn
* add predict method
* add back commented accelerator code
* adapt test for sync_batch_norm to new plugin
* fix deprecated tests
* fix ddp cpu choice when no num_processes are given
* yapf format
* skip a memory test that cannot pass anymore
* fix pickle error in spawn plugin
* x
* avoid
* x
* fix cyclic import in docs build
* add support for sharded
* update typing
* add sharded and sharded_spawn to distributed types
* make unwrap model default
* refactor LightningShardedDataParallel similar to LightningDistributedDataParallel
* update sharded spawn to reflect changes
* update sharded to reflect changes
* Merge 1.1.5 changes
* fix merge
* fix merge
* yapf isort
* fix merge
* yapf isort
* fix indentation in test
* copy over reinit scheduler implementation from dev1.2
* fix apex tracking calls with dev_debugger
* reduce diff to dev1.2, clean up
* fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu
* sort plugin tests legacy/new
* fix error handling for amp on cpu
* fix merge
fix merge
fix merge
* [Feat] Resolve manual_backward (#5837)
* resolve manual_backward
* resolve flake8
* update
* resolve for ddp_spawn
* resolve flake8
* resolve flake8
* resolve flake8
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* fix tests/accelerator tests on cpu
* [BugFix] Resolve manual optimization (#5852)
* resolve manual_optimization
* update
* update
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856)
* resovle a bug
* Accelerator refactor sharded rpc (#5854)
* rpc branch
* merge
* update handling of rpc
* make devices etc. Optional in RPC
* set devices etc. later if necessary
* remove devices from sequential
* make devices optional in rpc
* fix import
* uncomment everything
* fix cluster selection
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* resolve bug
* fix assert in rpc test
* resolve a test
* fix docs compilation
* accelerator refactor - fix for sharded parity test (#5866)
* fix memory issue with ddp_spawn
* x
x
x
x
x
x
x
x
x
* x
* Remove DDP2 as this does not apply
* Add missing pre optimizer hook to ensure lambda closure is called
* fix apex docstring
* [accelerator][BugFix] Resolve some test for 1 gpu (#5863)
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* update
* resolve flake8
* update
* update
* update
* update
* update
* all_gather
* update
* make plugins work, add misconfig for RPC
* update
* update
* remove breaking test
* resolve some tests
* resolve flake8
* revert to ddp_spawn
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
* yapf isort
* resolve flake8
* fix apex doctests
* fix apex doctests 2
* resolve docs
* update drone
* clean env
* update
* update
* update
* update
* merge
* Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881)
* Fix RPC related tests, clean out old API, update for new accelerator API
* Move tests out of legacy folder, update paths and names
* Update test_remove_1-4.py
* Expose properties for tpu cores/gpus/num_gpus
* Add root GPU property
* Move properties to properties.py
* move tests that were previously in drone
* Fix root GPU property (#5908)
* Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator
* Add missing tests back
* fix best model path transfer when no checkpoint callback available
* Fix setup hook order [wip] (#5858)
* Call trainer setup hook before accelerator setup
* Add test case
* add new test
* typo
* fix callback order in test
Co-authored-by: tchaton <thomas@grid.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* rename ddp sequential -> rpc sequential for special test
* revert
* fix stupid merge problem
* Use property in connector for sampler (#5913)
* merge the import conflicts
* fix spawning of processes in slurm
* [wip] Fix some bugs for TPU [skip ci] (#5878)
* fixed for single tpu
* fixed spawn
* fixed spawn
* update
* update
* wip
* resolve bugs
* resolve bug
* update on comment
* removed decorator
* resolve comments
* set to 4
* update
* update
* need cleaning
* update
* update
* update
* resolve flake8
* resolve bugs
* exclude broadcast
* resolve bugs
* change test
* update
* update
* skip if meet fails
* properly raise trace
* update
* add catch
* wrap test
* resolve typo
* update
* typo
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
* resolve some tests
* update
* fix imports
* update
* resolve flake8
* update azure pipeline
* skip a sharded test on cpu that requires a gpu
* resolve tpus
* resolve bug
* resolve flake8
* update
* updat utils
* revert permission change on files
* suggestions from carlos
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting changes
* remove incomplete comment
* Update pytorch_lightning/accelerators/__init__.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting change
* add types
* warn 1.7 ddp manual backward only if ddp kwarg unset
* yapf + isort
* pep8 unused imports
* fix cyclic import in docs
* Apply suggestions from code review
* typer in accelerator.py
* typo
* Apply suggestions from code review
* formatting
* update on comments
* update typo
* Update pytorch_lightning/trainer/properties.py
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* update
* suggestion from code review
* suggestion from code review
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
|
|
|
def is_available():
|
|
|
|
return True
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
monkeypatch.setattr(torch.cuda, "is_available", is_available)
|
|
|
|
monkeypatch.setattr(torch.cuda, "device_count", device_count)
|
2019-10-23 10:10:13 +00:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def mocked_device_count_0(monkeypatch):
|
|
|
|
def device_count():
|
|
|
|
return 0
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
monkeypatch.setattr(torch.cuda, "device_count", device_count)
|
2019-10-23 10:10:13 +00:00
|
|
|
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
["gpus", "expected_num_gpus", "distributed_backend"],
|
|
|
|
[
|
|
|
|
pytest.param(None, 0, None, id="None - expect 0 gpu to use."),
|
|
|
|
pytest.param(0, 0, None, id="Oth gpu, expect 1 gpu to use."),
|
|
|
|
pytest.param(1, 1, None, id="1st gpu, expect 1 gpu to use."),
|
|
|
|
pytest.param(-1, PRETEND_N_OF_GPUS, "ddp", id="-1 - use all gpus"),
|
|
|
|
pytest.param("-1", PRETEND_N_OF_GPUS, "ddp", id="'-1' - use all gpus"),
|
|
|
|
pytest.param(3, 3, "ddp", id="3rd gpu - 1 gpu to use (backend:ddp)"),
|
|
|
|
],
|
|
|
|
)
|
2019-10-23 10:10:13 +00:00
|
|
|
def test_trainer_gpu_parse(mocked_device_count, gpus, expected_num_gpus, distributed_backend):
|
2020-12-09 08:18:23 +00:00
|
|
|
assert Trainer(gpus=gpus, accelerator=distributed_backend).num_gpus == expected_num_gpus
|
2019-10-23 10:10:13 +00:00
|
|
|
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
["gpus", "expected_num_gpus", "distributed_backend"],
|
|
|
|
[
|
|
|
|
pytest.param(None, 0, None, id="None - expect 0 gpu to use."),
|
|
|
|
pytest.param(None, 0, "ddp", id="None - expect 0 gpu to use."),
|
|
|
|
],
|
|
|
|
)
|
2019-10-23 10:10:13 +00:00
|
|
|
def test_trainer_num_gpu_0(mocked_device_count_0, gpus, expected_num_gpus, distributed_backend):
|
2020-12-09 08:18:23 +00:00
|
|
|
assert Trainer(gpus=gpus, accelerator=distributed_backend).num_gpus == expected_num_gpus
|
2019-10-23 10:10:13 +00:00
|
|
|
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
["gpus", "expected_root_gpu", "distributed_backend"],
|
|
|
|
[
|
|
|
|
pytest.param(None, None, "ddp", id="None is None"),
|
|
|
|
pytest.param(0, None, "ddp", id="O gpus, expect gpu root device to be None."),
|
|
|
|
pytest.param(1, 0, "ddp", id="1 gpu, expect gpu root device to be 0."),
|
|
|
|
pytest.param(-1, 0, "ddp", id="-1 - use all gpus, expect gpu root device to be 0."),
|
|
|
|
pytest.param("-1", 0, "ddp", id="'-1' - use all gpus, expect gpu root device to be 0."),
|
|
|
|
pytest.param(3, 0, "ddp", id="3 gpus, expect gpu root device to be 0.(backend:ddp)"),
|
|
|
|
],
|
|
|
|
)
|
2019-10-23 10:10:13 +00:00
|
|
|
def test_root_gpu_property(mocked_device_count, gpus, expected_root_gpu, distributed_backend):
|
2020-12-09 08:18:23 +00:00
|
|
|
assert Trainer(gpus=gpus, accelerator=distributed_backend).root_gpu == expected_root_gpu
|
2019-10-23 10:10:13 +00:00
|
|
|
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
["gpus", "expected_root_gpu", "distributed_backend"],
|
|
|
|
[
|
|
|
|
pytest.param(None, None, None, id="None is None"),
|
|
|
|
pytest.param(None, None, "ddp", id="None is None"),
|
|
|
|
pytest.param(0, None, "ddp", id="None is None"),
|
|
|
|
],
|
|
|
|
)
|
2020-04-22 00:33:10 +00:00
|
|
|
def test_root_gpu_property_0_passing(mocked_device_count_0, gpus, expected_root_gpu, distributed_backend):
|
2020-12-09 08:18:23 +00:00
|
|
|
assert Trainer(gpus=gpus, accelerator=distributed_backend).root_gpu == expected_root_gpu
|
2019-10-23 10:10:13 +00:00
|
|
|
|
|
|
|
|
|
|
|
# Asking for a gpu when non are available will result in a MisconfigurationException
|
2021-07-26 11:37:35 +00:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
["gpus", "expected_root_gpu", "distributed_backend"],
|
|
|
|
[
|
2021-09-30 02:42:11 +00:00
|
|
|
(1, None, "ddp"),
|
|
|
|
(3, None, "ddp"),
|
|
|
|
(3, None, "ddp"),
|
|
|
|
([1, 2], None, "ddp"),
|
|
|
|
([0, 1], None, "ddp"),
|
|
|
|
(-1, None, "ddp"),
|
|
|
|
("-1", None, "ddp"),
|
2021-07-26 11:37:35 +00:00
|
|
|
],
|
|
|
|
)
|
2020-04-22 00:33:10 +00:00
|
|
|
def test_root_gpu_property_0_raising(mocked_device_count_0, gpus, expected_root_gpu, distributed_backend):
|
2019-10-23 10:10:13 +00:00
|
|
|
with pytest.raises(MisconfigurationException):
|
2020-12-09 08:18:23 +00:00
|
|
|
Trainer(gpus=gpus, accelerator=distributed_backend)
|
2019-10-23 10:10:13 +00:00
|
|
|
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
["gpus", "expected_root_gpu"],
|
|
|
|
[
|
|
|
|
pytest.param(None, None, id="No gpus, expect gpu root device to be None"),
|
|
|
|
pytest.param([0], 0, id="Oth gpu, expect gpu root device to be 0."),
|
|
|
|
pytest.param([1], 1, id="1st gpu, expect gpu root device to be 1."),
|
|
|
|
pytest.param([3], 3, id="3rd gpu, expect gpu root device to be 3."),
|
|
|
|
pytest.param([1, 2], 1, id="[1, 2] gpus, expect gpu root device to be 1."),
|
|
|
|
],
|
|
|
|
)
|
2019-10-23 10:10:13 +00:00
|
|
|
def test_determine_root_gpu_device(gpus, expected_root_gpu):
|
2020-09-08 22:46:42 +00:00
|
|
|
assert device_parser.determine_root_gpu_device(gpus) == expected_root_gpu
|
2019-10-23 10:10:13 +00:00
|
|
|
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
["gpus", "expected_gpu_ids"],
|
|
|
|
[
|
2021-09-30 02:42:11 +00:00
|
|
|
(None, None),
|
|
|
|
(0, None),
|
|
|
|
(1, [0]),
|
|
|
|
(3, [0, 1, 2]),
|
2021-07-26 11:37:35 +00:00
|
|
|
pytest.param(-1, list(range(PRETEND_N_OF_GPUS)), id="-1 - use all gpus"),
|
2021-09-30 02:42:11 +00:00
|
|
|
([0], [0]),
|
|
|
|
([1, 3], [1, 3]),
|
|
|
|
((1, 3), [1, 3]),
|
|
|
|
("0", None),
|
|
|
|
("3", [0, 1, 2]),
|
|
|
|
("1, 3", [1, 3]),
|
|
|
|
("2,", [2]),
|
2021-07-26 11:37:35 +00:00
|
|
|
pytest.param("-1", list(range(PRETEND_N_OF_GPUS)), id="'-1' - use all gpus"),
|
|
|
|
],
|
|
|
|
)
|
2019-10-23 10:10:13 +00:00
|
|
|
def test_parse_gpu_ids(mocked_device_count, gpus, expected_gpu_ids):
|
2020-09-08 22:46:42 +00:00
|
|
|
assert device_parser.parse_gpu_ids(gpus) == expected_gpu_ids
|
2019-10-23 10:10:13 +00:00
|
|
|
|
|
|
|
|
2021-09-30 02:42:11 +00:00
|
|
|
@pytest.mark.parametrize("gpus", [0.1, -2, False, [], [-1], [None], ["0"], [0, 0]])
|
2019-12-07 13:48:45 +00:00
|
|
|
def test_parse_gpu_fail_on_unsupported_inputs(mocked_device_count, gpus):
|
|
|
|
with pytest.raises(MisconfigurationException):
|
2020-09-08 22:46:42 +00:00
|
|
|
device_parser.parse_gpu_ids(gpus)
|
2019-12-07 13:48:45 +00:00
|
|
|
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
@pytest.mark.parametrize("gpus", [[1, 2, 19], -1, "-1"])
|
2020-05-07 13:25:54 +00:00
|
|
|
def test_parse_gpu_fail_on_non_existent_id(mocked_device_count_0, gpus):
|
2019-10-23 10:10:13 +00:00
|
|
|
with pytest.raises(MisconfigurationException):
|
2020-09-08 22:46:42 +00:00
|
|
|
device_parser.parse_gpu_ids(gpus)
|
2019-10-23 10:10:13 +00:00
|
|
|
|
|
|
|
|
2020-05-07 13:25:54 +00:00
|
|
|
def test_parse_gpu_fail_on_non_existent_id_2(mocked_device_count):
|
2019-10-23 10:10:13 +00:00
|
|
|
with pytest.raises(MisconfigurationException):
|
2020-09-08 22:46:42 +00:00
|
|
|
device_parser.parse_gpu_ids([1, 2, 19])
|
2019-10-23 10:10:13 +00:00
|
|
|
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
@pytest.mark.parametrize("gpus", [-1, "-1"])
|
2020-07-07 16:24:56 +00:00
|
|
|
def test_parse_gpu_returns_none_when_no_devices_are_available(mocked_device_count_0, gpus):
|
2019-10-23 10:10:13 +00:00
|
|
|
with pytest.raises(MisconfigurationException):
|
2020-09-08 22:46:42 +00:00
|
|
|
device_parser.parse_gpu_ids(gpus)
|
2020-06-16 02:03:40 +00:00
|
|
|
|
|
|
|
|
2021-06-23 12:09:53 +00:00
|
|
|
@mock.patch.dict(
|
2021-07-26 11:37:35 +00:00
|
|
|
os.environ,
|
|
|
|
{
|
2021-06-23 12:09:53 +00:00
|
|
|
"CUDA_VISIBLE_DEVICES": "0",
|
|
|
|
"LOCAL_RANK": "1",
|
|
|
|
"GROUP_RANK": "1",
|
|
|
|
"RANK": "3",
|
|
|
|
"WORLD_SIZE": "4",
|
|
|
|
"LOCAL_WORLD_SIZE": "2",
|
2021-07-26 11:37:35 +00:00
|
|
|
},
|
2021-06-23 12:09:53 +00:00
|
|
|
)
|
2021-07-26 11:37:35 +00:00
|
|
|
@mock.patch("torch.cuda.device_count", return_value=1)
|
|
|
|
@pytest.mark.parametrize("gpus", [[0, 1, 2], 2, "0"])
|
2021-06-23 12:09:53 +00:00
|
|
|
def test_torchelastic_gpu_parsing(mocked_device_count, gpus):
|
2021-09-06 12:49:09 +00:00
|
|
|
"""Ensure when using torchelastic and nproc_per_node is set to the default of 1 per GPU device That we omit
|
|
|
|
sanitizing the gpus as only one of the GPUs is visible."""
|
2021-06-23 12:09:53 +00:00
|
|
|
trainer = Trainer(gpus=gpus)
|
|
|
|
assert isinstance(trainer.accelerator_connector.cluster_environment, TorchElasticEnvironment)
|
|
|
|
assert trainer.accelerator_connector.parallel_device_ids == device_parser.parse_gpu_ids(gpus)
|
|
|
|
assert trainer.gpus == gpus
|
|
|
|
|
|
|
|
|
2021-03-02 08:03:32 +00:00
|
|
|
@RunIf(min_gpus=1)
|
2020-06-16 02:03:40 +00:00
|
|
|
def test_single_gpu_batch_parse():
|
2020-09-09 02:14:17 +00:00
|
|
|
trainer = Trainer(gpus=1)
|
2020-06-16 02:03:40 +00:00
|
|
|
|
2020-09-11 14:55:58 +00:00
|
|
|
# non-transferrable types
|
|
|
|
primitive_objects = [None, {}, [], 1.0, "x", [None, 2], {"x": (1, 2), "y": None}]
|
|
|
|
for batch in primitive_objects:
|
2021-07-26 11:37:35 +00:00
|
|
|
data = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
2020-09-11 14:55:58 +00:00
|
|
|
assert data == batch
|
|
|
|
|
2020-06-16 02:03:40 +00:00
|
|
|
# batch is just a tensor
|
|
|
|
batch = torch.rand(2, 3)
|
2021-07-26 11:37:35 +00:00
|
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
|
|
assert batch.device.index == 0 and batch.type() == "torch.cuda.FloatTensor"
|
2020-06-16 02:03:40 +00:00
|
|
|
|
|
|
|
# tensor list
|
|
|
|
batch = [torch.rand(2, 3), torch.rand(2, 3)]
|
2021-07-26 11:37:35 +00:00
|
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
|
|
assert batch[0].device.index == 0 and batch[0].type() == "torch.cuda.FloatTensor"
|
|
|
|
assert batch[1].device.index == 0 and batch[1].type() == "torch.cuda.FloatTensor"
|
2020-06-16 02:03:40 +00:00
|
|
|
|
|
|
|
# tensor list of lists
|
|
|
|
batch = [[torch.rand(2, 3), torch.rand(2, 3)]]
|
2021-07-26 11:37:35 +00:00
|
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
|
|
assert batch[0][0].device.index == 0 and batch[0][0].type() == "torch.cuda.FloatTensor"
|
|
|
|
assert batch[0][1].device.index == 0 and batch[0][1].type() == "torch.cuda.FloatTensor"
|
2020-06-16 02:03:40 +00:00
|
|
|
|
|
|
|
# tensor dict
|
2021-07-26 11:37:35 +00:00
|
|
|
batch = [{"a": torch.rand(2, 3), "b": torch.rand(2, 3)}]
|
|
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
|
|
assert batch[0]["a"].device.index == 0 and batch[0]["a"].type() == "torch.cuda.FloatTensor"
|
|
|
|
assert batch[0]["b"].device.index == 0 and batch[0]["b"].type() == "torch.cuda.FloatTensor"
|
2020-06-16 02:03:40 +00:00
|
|
|
|
|
|
|
# tuple of tensor list and list of tensor dict
|
2021-07-26 11:37:35 +00:00
|
|
|
batch = ([torch.rand(2, 3) for _ in range(2)], [{"a": torch.rand(2, 3), "b": torch.rand(2, 3)} for _ in range(2)])
|
|
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
|
|
assert batch[0][0].device.index == 0 and batch[0][0].type() == "torch.cuda.FloatTensor"
|
2020-06-16 02:03:40 +00:00
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
assert batch[1][0]["a"].device.index == 0
|
|
|
|
assert batch[1][0]["a"].type() == "torch.cuda.FloatTensor"
|
2020-06-16 02:03:40 +00:00
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
assert batch[1][0]["b"].device.index == 0
|
|
|
|
assert batch[1][0]["b"].type() == "torch.cuda.FloatTensor"
|
2020-06-16 02:03:40 +00:00
|
|
|
|
|
|
|
# namedtuple of tensor
|
2021-07-26 11:37:35 +00:00
|
|
|
BatchType = namedtuple("BatchType", ["a", "b"])
|
2020-06-16 02:03:40 +00:00
|
|
|
batch = [BatchType(a=torch.rand(2, 3), b=torch.rand(2, 3)) for _ in range(2)]
|
2021-07-26 11:37:35 +00:00
|
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
2020-06-16 02:03:40 +00:00
|
|
|
assert batch[0].a.device.index == 0
|
2021-07-26 11:37:35 +00:00
|
|
|
assert batch[0].a.type() == "torch.cuda.FloatTensor"
|
2020-06-24 03:41:02 +00:00
|
|
|
|
|
|
|
# non-Tensor that has `.to()` defined
|
|
|
|
class CustomBatchType:
|
|
|
|
def __init__(self):
|
|
|
|
self.a = torch.rand(2, 2)
|
|
|
|
|
|
|
|
def to(self, *args, **kwargs):
|
|
|
|
self.a = self.a.to(*args, **kwargs)
|
|
|
|
return self
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
batch = trainer.accelerator.batch_to_device(CustomBatchType(), torch.device("cuda:0"))
|
|
|
|
assert batch.a.type() == "torch.cuda.FloatTensor"
|
2020-06-27 20:36:45 +00:00
|
|
|
|
|
|
|
# torchtext.data.Batch
|
2021-07-26 11:37:35 +00:00
|
|
|
samples = [
|
|
|
|
{"text": "PyTorch Lightning is awesome!", "label": 0},
|
|
|
|
{"text": "Please make it work with torchtext", "label": 1},
|
|
|
|
]
|
2020-06-27 20:36:45 +00:00
|
|
|
|
|
|
|
text_field = Field()
|
|
|
|
label_field = LabelField()
|
2021-07-26 11:37:35 +00:00
|
|
|
fields = {"text": ("text", text_field), "label": ("label", label_field)}
|
2020-06-27 20:36:45 +00:00
|
|
|
|
|
|
|
examples = [Example.fromdict(sample, fields) for sample in samples]
|
2021-02-06 11:07:26 +00:00
|
|
|
dataset = Dataset(examples=examples, fields=fields.values())
|
2020-06-27 20:36:45 +00:00
|
|
|
|
|
|
|
# Batch runs field.process() that numericalizes tokens, but it requires to build dictionary first
|
|
|
|
text_field.build_vocab(dataset)
|
|
|
|
label_field.build_vocab(dataset)
|
|
|
|
|
|
|
|
batch = Batch(data=examples, dataset=dataset)
|
2021-07-26 11:37:35 +00:00
|
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
2020-06-27 20:36:45 +00:00
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
assert batch.text.type() == "torch.cuda.LongTensor"
|
|
|
|
assert batch.label.type() == "torch.cuda.LongTensor"
|
2020-08-11 23:28:37 +00:00
|
|
|
|
|
|
|
|
2021-03-02 08:03:32 +00:00
|
|
|
@RunIf(min_gpus=1)
|
2020-08-11 23:28:37 +00:00
|
|
|
def test_non_blocking():
|
2021-07-26 11:37:35 +00:00
|
|
|
"""Tests that non_blocking=True only gets passed on torch.Tensor.to, but not on other objects."""
|
2020-08-11 23:28:37 +00:00
|
|
|
trainer = Trainer()
|
|
|
|
|
|
|
|
batch = torch.zeros(2, 3)
|
2021-07-26 11:37:35 +00:00
|
|
|
with patch.object(batch, "to", wraps=batch.to) as mocked:
|
|
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
|
|
mocked.assert_called_with(torch.device("cuda", 0), non_blocking=True)
|
2020-08-11 23:28:37 +00:00
|
|
|
|
2021-07-26 12:38:12 +00:00
|
|
|
class BatchObject:
|
2020-08-11 23:28:37 +00:00
|
|
|
def to(self, *args, **kwargs):
|
|
|
|
pass
|
|
|
|
|
|
|
|
batch = BatchObject()
|
2021-07-26 11:37:35 +00:00
|
|
|
with patch.object(batch, "to", wraps=batch.to) as mocked:
|
|
|
|
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
|
|
|
|
mocked.assert_called_with(torch.device("cuda", 0))
|