2020-04-02 15:48:53 +00:00
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
2020-03-05 11:48:54 +00:00
|
|
|
from pytorch_lightning import Trainer
|
2020-05-04 20:51:39 +00:00
|
|
|
from tests.base import EvalModelTemplate
|
2020-10-03 16:33:29 +00:00
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
2020-03-05 11:48:54 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_optimizer_with_scheduling(tmpdir):
|
|
|
|
""" Verify that learning rate scheduling is working """
|
|
|
|
|
2020-05-10 17:15:28 +00:00
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
2020-05-24 22:59:08 +00:00
|
|
|
model = EvalModelTemplate(**hparams)
|
2020-05-04 20:51:39 +00:00
|
|
|
model.configure_optimizers = model.configure_optimizers__single_scheduler
|
2020-03-05 11:48:54 +00:00
|
|
|
|
2020-05-01 14:43:58 +00:00
|
|
|
# fit model
|
|
|
|
trainer = Trainer(
|
2020-04-10 16:02:59 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-03-05 11:48:54 +00:00
|
|
|
max_epochs=1,
|
2020-06-17 12:03:28 +00:00
|
|
|
limit_val_batches=0.1,
|
2020-06-27 01:38:25 +00:00
|
|
|
limit_train_batches=0.2,
|
2020-03-05 11:48:54 +00:00
|
|
|
)
|
|
|
|
results = trainer.fit(model)
|
2020-05-04 20:51:39 +00:00
|
|
|
assert results == 1
|
2020-03-05 11:48:54 +00:00
|
|
|
|
2020-05-24 22:59:08 +00:00
|
|
|
init_lr = hparams.get('learning_rate')
|
2020-03-05 11:48:54 +00:00
|
|
|
adjusted_lr = [pg['lr'] for pg in trainer.optimizers[0].param_groups]
|
|
|
|
|
|
|
|
assert len(trainer.lr_schedulers) == 1, \
|
|
|
|
'lr scheduler not initialized properly, it has %i elements instread of 1' % len(trainer.lr_schedulers)
|
|
|
|
|
|
|
|
assert all(a == adjusted_lr[0] for a in adjusted_lr), \
|
|
|
|
'Lr not equally adjusted for all param groups'
|
|
|
|
adjusted_lr = adjusted_lr[0]
|
|
|
|
|
|
|
|
assert init_lr * 0.1 == adjusted_lr, \
|
|
|
|
'Lr not adjusted correctly, expected %f but got %f' % (init_lr * 0.1, adjusted_lr)
|
|
|
|
|
|
|
|
|
|
|
|
def test_multi_optimizer_with_scheduling(tmpdir):
|
|
|
|
""" Verify that learning rate scheduling is working """
|
|
|
|
|
2020-05-10 17:15:28 +00:00
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
2020-05-24 22:59:08 +00:00
|
|
|
model = EvalModelTemplate(**hparams)
|
2020-05-04 20:51:39 +00:00
|
|
|
model.configure_optimizers = model.configure_optimizers__multiple_schedulers
|
2020-03-05 11:48:54 +00:00
|
|
|
|
2020-05-01 14:43:58 +00:00
|
|
|
# fit model
|
|
|
|
trainer = Trainer(
|
2020-04-10 16:02:59 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-03-05 11:48:54 +00:00
|
|
|
max_epochs=1,
|
2020-06-17 12:03:28 +00:00
|
|
|
limit_val_batches=0.1,
|
2020-06-27 01:38:25 +00:00
|
|
|
limit_train_batches=0.2,
|
2020-03-05 11:48:54 +00:00
|
|
|
)
|
|
|
|
results = trainer.fit(model)
|
2020-05-04 20:51:39 +00:00
|
|
|
assert results == 1
|
2020-03-05 11:48:54 +00:00
|
|
|
|
2020-05-24 22:59:08 +00:00
|
|
|
init_lr = hparams.get('learning_rate')
|
2020-03-05 11:48:54 +00:00
|
|
|
adjusted_lr1 = [pg['lr'] for pg in trainer.optimizers[0].param_groups]
|
|
|
|
adjusted_lr2 = [pg['lr'] for pg in trainer.optimizers[1].param_groups]
|
|
|
|
|
|
|
|
assert len(trainer.lr_schedulers) == 2, \
|
|
|
|
'all lr scheduler not initialized properly, it has %i elements instread of 1' % len(trainer.lr_schedulers)
|
|
|
|
|
|
|
|
assert all(a == adjusted_lr1[0] for a in adjusted_lr1), \
|
|
|
|
'Lr not equally adjusted for all param groups for optimizer 1'
|
|
|
|
adjusted_lr1 = adjusted_lr1[0]
|
|
|
|
|
|
|
|
assert all(a == adjusted_lr2[0] for a in adjusted_lr2), \
|
|
|
|
'Lr not equally adjusted for all param groups for optimizer 2'
|
|
|
|
adjusted_lr2 = adjusted_lr2[0]
|
|
|
|
|
|
|
|
assert init_lr * 0.1 == adjusted_lr1 and init_lr * 0.1 == adjusted_lr2, \
|
|
|
|
'Lr not adjusted correctly, expected %f but got %f' % (init_lr * 0.1, adjusted_lr1)
|
|
|
|
|
|
|
|
|
|
|
|
def test_multi_optimizer_with_scheduling_stepping(tmpdir):
|
|
|
|
|
2020-05-10 17:15:28 +00:00
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
2020-05-24 22:59:08 +00:00
|
|
|
model = EvalModelTemplate(**hparams)
|
2020-05-04 20:51:39 +00:00
|
|
|
model.configure_optimizers = model.configure_optimizers__multiple_schedulers
|
2020-03-05 11:48:54 +00:00
|
|
|
|
2020-05-01 14:43:58 +00:00
|
|
|
# fit model
|
|
|
|
trainer = Trainer(
|
2020-04-10 16:02:59 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-03-05 11:48:54 +00:00
|
|
|
max_epochs=1,
|
2020-06-17 12:03:28 +00:00
|
|
|
limit_val_batches=0.1,
|
2020-06-27 01:38:25 +00:00
|
|
|
limit_train_batches=0.2,
|
2020-03-05 11:48:54 +00:00
|
|
|
)
|
|
|
|
results = trainer.fit(model)
|
2020-05-04 20:51:39 +00:00
|
|
|
assert results == 1
|
2020-03-05 11:48:54 +00:00
|
|
|
|
2020-05-24 22:59:08 +00:00
|
|
|
init_lr = hparams.get('learning_rate')
|
2020-03-05 11:48:54 +00:00
|
|
|
adjusted_lr1 = [pg['lr'] for pg in trainer.optimizers[0].param_groups]
|
|
|
|
adjusted_lr2 = [pg['lr'] for pg in trainer.optimizers[1].param_groups]
|
|
|
|
|
|
|
|
assert len(trainer.lr_schedulers) == 2, \
|
|
|
|
'all lr scheduler not initialized properly'
|
|
|
|
|
|
|
|
assert all(a == adjusted_lr1[0] for a in adjusted_lr1), \
|
|
|
|
'lr not equally adjusted for all param groups for optimizer 1'
|
|
|
|
adjusted_lr1 = adjusted_lr1[0]
|
|
|
|
|
|
|
|
assert all(a == adjusted_lr2[0] for a in adjusted_lr2), \
|
|
|
|
'lr not equally adjusted for all param groups for optimizer 2'
|
|
|
|
adjusted_lr2 = adjusted_lr2[0]
|
|
|
|
|
|
|
|
# Called ones after end of epoch
|
2020-05-04 20:51:39 +00:00
|
|
|
assert init_lr * 0.1 ** 1 == adjusted_lr1, \
|
2020-03-05 11:48:54 +00:00
|
|
|
'lr for optimizer 1 not adjusted correctly'
|
|
|
|
# Called every 3 steps, meaning for 1 epoch of 11 batches, it is called 3 times
|
|
|
|
assert init_lr * 0.1 == adjusted_lr2, \
|
|
|
|
'lr for optimizer 2 not adjusted correctly'
|
2020-03-16 18:35:10 +00:00
|
|
|
|
|
|
|
|
2020-10-03 16:33:29 +00:00
|
|
|
def test_reduce_lr_on_plateau_scheduling_missing_monitor(tmpdir):
|
2020-03-16 18:35:10 +00:00
|
|
|
|
2020-05-10 17:15:28 +00:00
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
2020-05-24 22:59:08 +00:00
|
|
|
model = EvalModelTemplate(**hparams)
|
2020-05-04 20:51:39 +00:00
|
|
|
model.configure_optimizers = model.configure_optimizers__reduce_lr_on_plateau
|
2020-03-16 18:35:10 +00:00
|
|
|
|
2020-10-03 16:33:29 +00:00
|
|
|
# fit model
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
max_epochs=1,
|
|
|
|
limit_val_batches=0.1,
|
|
|
|
limit_train_batches=0.2,
|
|
|
|
)
|
|
|
|
|
|
|
|
m = '.*ReduceLROnPlateau requires returning a dict from configure_optimizers.*'
|
|
|
|
with pytest.raises(MisconfigurationException, match=m):
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
|
|
|
|
def test_reduce_lr_on_plateau_scheduling(tmpdir):
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
|
|
class TestModel(EvalModelTemplate):
|
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
|
|
|
|
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
|
|
|
|
return {'optimizer': optimizer, 'lr_scheduler': lr_scheduler, 'monitor': 'early_stop_on'}
|
|
|
|
|
|
|
|
model = TestModel(**hparams)
|
|
|
|
|
2020-05-01 14:43:58 +00:00
|
|
|
# fit model
|
|
|
|
trainer = Trainer(
|
2020-04-10 16:02:59 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-03-16 18:35:10 +00:00
|
|
|
max_epochs=1,
|
2020-06-17 12:03:28 +00:00
|
|
|
limit_val_batches=0.1,
|
2020-06-27 01:38:25 +00:00
|
|
|
limit_train_batches=0.2,
|
2020-03-16 18:35:10 +00:00
|
|
|
)
|
|
|
|
results = trainer.fit(model)
|
2020-05-04 20:51:39 +00:00
|
|
|
assert results == 1
|
2020-03-16 18:35:10 +00:00
|
|
|
|
|
|
|
assert trainer.lr_schedulers[0] == \
|
2020-10-03 16:33:29 +00:00
|
|
|
dict(scheduler=trainer.lr_schedulers[0]['scheduler'], monitor='early_stop_on',
|
2020-03-16 18:35:10 +00:00
|
|
|
interval='epoch', frequency=1, reduce_on_plateau=True), \
|
|
|
|
'lr schduler was not correctly converted to dict'
|
2020-04-02 15:48:53 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_optimizer_return_options():
|
|
|
|
|
|
|
|
trainer = Trainer()
|
2020-05-10 17:15:28 +00:00
|
|
|
model = EvalModelTemplate()
|
2020-04-02 15:48:53 +00:00
|
|
|
|
|
|
|
# single optimizer
|
|
|
|
opt_a = torch.optim.Adam(model.parameters(), lr=0.002)
|
|
|
|
opt_b = torch.optim.SGD(model.parameters(), lr=0.002)
|
|
|
|
scheduler_a = torch.optim.lr_scheduler.StepLR(opt_a, 10)
|
|
|
|
scheduler_b = torch.optim.lr_scheduler.StepLR(opt_b, 10)
|
|
|
|
|
|
|
|
# single optimizer
|
|
|
|
model.configure_optimizers = lambda: opt_a
|
|
|
|
optim, lr_sched, freq = trainer.init_optimizers(model)
|
|
|
|
assert len(optim) == 1 and len(lr_sched) == 0 and len(freq) == 0
|
|
|
|
|
|
|
|
# opt tuple
|
|
|
|
model.configure_optimizers = lambda: (opt_a, opt_b)
|
|
|
|
optim, lr_sched, freq = trainer.init_optimizers(model)
|
|
|
|
assert len(optim) == 2 and optim[0] == opt_a and optim[1] == opt_b
|
|
|
|
assert len(lr_sched) == 0 and len(freq) == 0
|
|
|
|
|
|
|
|
# opt list
|
|
|
|
model.configure_optimizers = lambda: [opt_a, opt_b]
|
|
|
|
optim, lr_sched, freq = trainer.init_optimizers(model)
|
|
|
|
assert len(optim) == 2 and optim[0] == opt_a and optim[1] == opt_b
|
|
|
|
assert len(lr_sched) == 0 and len(freq) == 0
|
|
|
|
|
|
|
|
# opt tuple of 2 lists
|
|
|
|
model.configure_optimizers = lambda: ([opt_a], [scheduler_a])
|
|
|
|
optim, lr_sched, freq = trainer.init_optimizers(model)
|
|
|
|
assert len(optim) == 1 and len(lr_sched) == 1 and len(freq) == 0
|
|
|
|
assert optim[0] == opt_a
|
|
|
|
assert lr_sched[0] == dict(scheduler=scheduler_a, interval='epoch',
|
2020-10-03 16:33:29 +00:00
|
|
|
frequency=1, reduce_on_plateau=False)
|
2020-04-02 15:48:53 +00:00
|
|
|
|
|
|
|
# opt single dictionary
|
|
|
|
model.configure_optimizers = lambda: {"optimizer": opt_a, "lr_scheduler": scheduler_a}
|
|
|
|
optim, lr_sched, freq = trainer.init_optimizers(model)
|
|
|
|
assert len(optim) == 1 and len(lr_sched) == 1 and len(freq) == 0
|
|
|
|
assert optim[0] == opt_a
|
|
|
|
assert lr_sched[0] == dict(scheduler=scheduler_a, interval='epoch',
|
2020-10-03 16:33:29 +00:00
|
|
|
frequency=1, reduce_on_plateau=False)
|
2020-04-02 15:48:53 +00:00
|
|
|
|
|
|
|
# opt multiple dictionaries with frequencies
|
|
|
|
model.configure_optimizers = lambda: (
|
|
|
|
{"optimizer": opt_a, "lr_scheduler": scheduler_a, "frequency": 1},
|
|
|
|
{"optimizer": opt_b, "lr_scheduler": scheduler_b, "frequency": 5},
|
|
|
|
)
|
|
|
|
optim, lr_sched, freq = trainer.init_optimizers(model)
|
|
|
|
assert len(optim) == 2 and len(lr_sched) == 2 and len(freq) == 2
|
|
|
|
assert optim[0] == opt_a
|
|
|
|
assert lr_sched[0] == dict(scheduler=scheduler_a, interval='epoch',
|
2020-10-03 16:33:29 +00:00
|
|
|
frequency=1, reduce_on_plateau=False)
|
2020-04-02 15:48:53 +00:00
|
|
|
assert freq == [1, 5]
|
|
|
|
|
|
|
|
|
|
|
|
def test_none_optimizer_warning():
|
|
|
|
|
|
|
|
trainer = Trainer()
|
|
|
|
|
2020-05-10 17:15:28 +00:00
|
|
|
model = EvalModelTemplate()
|
2020-09-28 23:09:04 +00:00
|
|
|
model.configure_optimizers = model.configure_optimizers__empty
|
2020-04-02 15:48:53 +00:00
|
|
|
|
|
|
|
with pytest.warns(UserWarning, match='will run with no optimizer'):
|
|
|
|
_, __, ___ = trainer.init_optimizers(model)
|
|
|
|
|
|
|
|
|
|
|
|
def test_none_optimizer(tmpdir):
|
|
|
|
|
2020-05-10 17:15:28 +00:00
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
2020-05-24 22:59:08 +00:00
|
|
|
model = EvalModelTemplate(**hparams)
|
2020-05-04 20:51:39 +00:00
|
|
|
model.configure_optimizers = model.configure_optimizers__empty
|
2020-04-02 15:48:53 +00:00
|
|
|
|
2020-05-01 14:43:58 +00:00
|
|
|
# fit model
|
|
|
|
trainer = Trainer(
|
2020-04-10 16:02:59 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-04-02 15:48:53 +00:00
|
|
|
max_epochs=1,
|
2020-06-17 12:03:28 +00:00
|
|
|
limit_val_batches=0.1,
|
2020-06-27 01:38:25 +00:00
|
|
|
limit_train_batches=0.2,
|
2020-04-02 15:48:53 +00:00
|
|
|
)
|
|
|
|
result = trainer.fit(model)
|
|
|
|
|
|
|
|
# verify training completed
|
|
|
|
assert result == 1
|
2020-04-10 15:43:06 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_configure_optimizer_from_dict(tmpdir):
|
2020-05-04 20:51:39 +00:00
|
|
|
"""Tests if `configure_optimizer` method could return a dictionary with `optimizer` field only."""
|
2020-04-10 15:43:06 +00:00
|
|
|
|
2020-05-04 20:51:39 +00:00
|
|
|
class CurrentModel(EvalModelTemplate):
|
2020-04-10 15:43:06 +00:00
|
|
|
def configure_optimizers(self):
|
|
|
|
config = {
|
|
|
|
'optimizer': torch.optim.SGD(params=self.parameters(), lr=1e-03)
|
|
|
|
}
|
|
|
|
return config
|
|
|
|
|
2020-05-10 17:15:28 +00:00
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
2020-06-27 20:38:03 +00:00
|
|
|
model = CurrentModel(**hparams)
|
2020-04-10 15:43:06 +00:00
|
|
|
|
|
|
|
# fit model
|
2020-06-27 01:38:25 +00:00
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
max_epochs=1,
|
|
|
|
)
|
2020-04-10 15:43:06 +00:00
|
|
|
result = trainer.fit(model)
|
|
|
|
assert result == 1
|
2020-09-10 21:01:20 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_configure_optimizers_with_frequency(tmpdir):
|
|
|
|
"""
|
|
|
|
Test that multiple optimizers work when corresponding frequency is set.
|
|
|
|
"""
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
model.configure_optimizers = model.configure_optimizers__multiple_optimizers_frequency
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
max_epochs=1
|
|
|
|
)
|
|
|
|
result = trainer.fit(model)
|
|
|
|
assert result
|
2020-09-28 23:09:04 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_init_optimizers_during_testing(tmpdir):
|
|
|
|
"""
|
|
|
|
Test that optimizers is an empty list during testing.
|
|
|
|
"""
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
model.configure_optimizers = model.configure_optimizers__multiple_schedulers
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
limit_test_batches=10
|
|
|
|
)
|
|
|
|
trainer.test(model, ckpt_path=None)
|
|
|
|
|
|
|
|
assert len(trainer.lr_schedulers) == 0
|
|
|
|
assert len(trainer.optimizers) == 0
|
|
|
|
assert len(trainer.optimizer_frequencies) == 0
|