2020-10-04 01:17:24 +00:00
|
|
|
import torch
|
|
|
|
from pytorch_lightning import LightningModule
|
|
|
|
from torch.utils.data import Dataset
|
|
|
|
|
|
|
|
|
2020-10-06 01:30:41 +00:00
|
|
|
class RandomDictDataset(Dataset):
|
|
|
|
def __init__(self, size, length):
|
|
|
|
self.len = length
|
|
|
|
self.data = torch.randn(length, size)
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
a = self.data[index]
|
|
|
|
b = a + 2
|
|
|
|
return {'a': a, 'b': b}
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.len
|
|
|
|
|
|
|
|
|
2020-10-04 01:17:24 +00:00
|
|
|
class RandomDataset(Dataset):
|
|
|
|
def __init__(self, size, length):
|
|
|
|
self.len = length
|
|
|
|
self.data = torch.randn(length, size)
|
|
|
|
|
|
|
|
def __getitem__(self, index):
|
|
|
|
return self.data[index]
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.len
|
|
|
|
|
|
|
|
|
|
|
|
class BoringModel(LightningModule):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
"""
|
|
|
|
Testing PL Module
|
|
|
|
|
|
|
|
Use as follows:
|
|
|
|
- subclass
|
|
|
|
- modify the behavior for what you want
|
|
|
|
|
|
|
|
class TestModel(BaseTestModel):
|
|
|
|
def training_step(...):
|
|
|
|
# do your own thing
|
|
|
|
|
|
|
|
or:
|
|
|
|
|
|
|
|
model = BaseTestModel()
|
|
|
|
model.training_epoch_end = None
|
|
|
|
|
|
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
self.layer = torch.nn.Linear(32, 2)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.layer(x)
|
|
|
|
|
|
|
|
def loss(self, batch, prediction):
|
|
|
|
# An arbitrary loss to have a loss that updates the model weights during `Trainer.fit` calls
|
|
|
|
return torch.nn.functional.mse_loss(prediction, torch.ones_like(prediction))
|
|
|
|
|
|
|
|
def step(self, x):
|
|
|
|
x = self.layer(x)
|
|
|
|
out = torch.nn.functional.mse_loss(x, torch.ones_like(x))
|
|
|
|
return out
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
|
|
output = self.layer(batch)
|
|
|
|
loss = self.loss(batch, output)
|
|
|
|
return {"loss": loss}
|
|
|
|
|
|
|
|
def training_step_end(self, training_step_outputs):
|
|
|
|
return training_step_outputs
|
|
|
|
|
|
|
|
def training_epoch_end(self, outputs) -> None:
|
|
|
|
torch.stack([x["loss"] for x in outputs]).mean()
|
|
|
|
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
|
|
output = self.layer(batch)
|
|
|
|
loss = self.loss(batch, output)
|
|
|
|
return {"x": loss}
|
|
|
|
|
|
|
|
def validation_epoch_end(self, outputs) -> None:
|
|
|
|
torch.stack([x['x'] for x in outputs]).mean()
|
|
|
|
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
|
|
output = self.layer(batch)
|
|
|
|
loss = self.loss(batch, output)
|
|
|
|
return {"y": loss}
|
|
|
|
|
|
|
|
def test_epoch_end(self, outputs) -> None:
|
|
|
|
torch.stack([x["y"] for x in outputs]).mean()
|
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
|
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
|
|
|
|
return [optimizer], [lr_scheduler]
|
|
|
|
|
|
|
|
def train_dataloader(self):
|
|
|
|
return torch.utils.data.DataLoader(RandomDataset(32, 64))
|
|
|
|
|
|
|
|
def val_dataloader(self):
|
|
|
|
return torch.utils.data.DataLoader(RandomDataset(32, 64))
|
|
|
|
|
|
|
|
def test_dataloader(self):
|
|
|
|
return torch.utils.data.DataLoader(RandomDataset(32, 64))
|